Cut to the Core

3rd Grade Math Homework
Based on the Utah State Core Standards and Objectives

© 2004 Lara Dean
Over the years I have recognized the need for a homework program that reviewed the Standards and Objectives of the Utah State Core Curriculum. I have tried many mixed review workbooks, but none of them were based upon Utah’s Core. There was either more than or not enough of what my students needed.

Last year the Salt Lake City School District created a pacing map for teachers to follow. The pacing map has helped to ensure all of the Utah Core Standards and Objectives in Mathematics are covered before state testing. In addition, students who transfer have little disruption in their math education.

Based upon this pacing map, I have created monthly concepts review sheets. Each month I focus my instruction, assignments, and activities around the concepts outlined on the pacing map. At the end of each month I work through the first homework sheet for that month on the overhead as a whole class activity. (The homework sheets have the month name for traditional schools and the month number for year round schools. They correspond with the pacing map). After we work through the first sheet together, it goes home for homework. The review sheet for that month is sent home every week.

At the end of each month I add a new review sheet for the students. By the end of December, the class gets a review of September, October, November, and December every week. By the end of April, when it is time to review for CRT’s, they are getting a thorough review of the Utah Math Core every two weeks.

Most of the concepts from the core are in here. One thing missing is the opportunity for the students to “model” or “demonstrate” how to do something. Nets and $1 bills are not represented on these homework sheets either.

In April there is more on time than is required. In my classroom I use the book The Time Song (Rozanne Lanczak Williams ISBN: 1574710044). It covers the measurements of time with a catchy tune, and my class adds a verse or two for the measurements of time that are not in the book.
Benefits of this Homework Program

• The students get continuous review on the concepts for their grade level based upon the Utah State Core Standards and Objectives.
• There are numerous opportunities for re-teaching.
• It is easy to assess what new students know and what they still need to learn.
• The homework cycles in a way that helps ELL students become familiar not only with the computation, but also the vocabulary and concepts.
• The homework sheets provide a focus for what I need to cover and/or review.
• I have included most of the Target Vocabulary for each grade. Difficult concepts or concepts which may be new for the students are in bold type for emphasis.
• Certain concepts have definitions or examples with them so the students remember what to do when they get home. Parents have found this helpful to them too.
• Homework can be done with little or no help from home because it is a review of what has already been taught.
• The students remember concepts at testing time because they have reviewed them at least every other week after initially learning them.
• The worksheets come in handy when there is a guest teacher.
• The worksheets cover most concepts in the Core, not just the concepts that are likely to be on the test. (Hopefully this will make teachers in the next grade happy!)
• You can use the previous year’s worksheets as a review at the beginning of the year.
• There are different kinds of problems: multiple choice, computation, short answer, oral language (poems), comparisons, and opportunities to illustrate their thinking with pictorial representations.
• They can be used as pre and post-tests.
• The variety of problems and format on each page is just enough to keep the concepts fresh in the students’ minds.
• Once all 12 worksheets have been used for a certain month, you can start at the beginning and reuse them. The students don’t notice.

To find the pacing map for your grade go to:

http://www.slc.k12.ut.us/depts/learningsvcs/curr/math/

1) Click on the name Kim Colton at the top of the page.
2) Under "Kim’s Page" click on SFAW Pacing Maps
3) Click on your grade level
Write 36 in **expanded form**: _________________________

Which digit is in the **one's** place?____ What is its **value**?_____

Which digit is in the **ten's** place?____ What is its **value**?_____

Look at the number 64.

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?________

42 is written this way in expanded form:
 a) 4 + 2
 b) 40 + 20
 c) 40 + 2

42 is written this way in place value form:
 a) 4 tens, 2 ones
 b) 40 tens, 2 ones
 c) 4 ones, 2 ones

How do you **read** the number 87?
 a) eight seven
 b) eighty-seven
 c) eight seventy

Write a **numeral** (number) with 4 tens, and 5 ones: ____________
The **Identity Property of Addition** states that any number added to zero always _________ the _________.

Example: $7 + 0 = _____$

Draw a picture showing $2 + 4 = 6$

What number is shown with these place value blocks?

Table showing place value blocks with corresponding number pictures.

50 is the same as: (When in doubt, work it out!)

a) $12 + 12$

b) $20 + 20$

c) $60 - 10$

Commutative Property of Addition—

When the order of **addends** is changed, the **sum** stays the same.

Example: $3 + 2 = _____$ and $2 + 3 = _____$

Skip count by:

- **zeros**: 0 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 0
- **ones**: 1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 10
- **twos**: 2 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 20
- **fives**: 5 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 50
Write 75 in expanded form: ________________________________

Which digit is in the one's place?____ What is its value?_____

Which digit is in the ten's place?____ What is its value?_____

Look at the number 85. (Show your work)

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?________

37 is written this way in expanded form:
 a) 30 + 70
 b) 30 + 7
 c) 3 + 7

37 is written this way in place value form:
 a) 3 tens, 7 ones
 b) 3 tens, 70 ones
 c) 3 ones, 7 ones

How do you read the number 15?
 a) ten five
 b) fifteen
 c) one ten and five

Write a numeral (number) with 2 tens, and 4 ones: ____________________
The **Identity Property of Addition** states that any number added to zero always _________ the _________.

Example: \(16 + 0 = \) ____

Draw a picture to show \(7 + 2 = 9\)

What number is shown with these place value blocks?

\[
\begin{array}{c}
| & | & | & | & | & | & | & | & | & |
|---|---|---|---|---|---|---|---|---|---|
\end{array}
\]

\[
\begin{array}{c}
| & | & | & | & | & | & | & |
|---|---|---|---|---|---|---|---|---|---|
\end{array}
\]

\[
\begin{array}{c}
| & | & | & | & | & | & | & |
|---|---|---|---|---|---|---|---|---|---|
\end{array}
\]

\[
\begin{array}{c}
| & | & | & | & | & | & | & |
|---|---|---|---|---|---|---|---|---|---|
\end{array}
\]

20 is the same as:
(When in doubt, work it out!)

a) \(12 + 8\)
b) \(20 - 10\)
c) \(40 - 10\)

Commutative Property of Addition

When the order of **addends** is changed, the **sum** stays the same.

Example: \(7 + 4 = \) _____ and \(4 + 7 = \) _____

Skip count by:

- **zeros**: 0 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ 0
- **ones**: 1 ______ ______ ______ ______ ______ ______ ______ ______ 10
- **twos**: 2 ______ ______ ______ ______ ______ ______ ______ ______ 20
- **fives**: 5 ______ ______ ______ ______ ______ ______ ______ ______ 50

© 2004 Lara Dean
Write 29 in **expanded form**: _________________________

Which digit is in the **one's place**?____ What is its **value**?____

Which digit is in the **ten's place**?____ What is its **value**?____

Look at the number 28. (Show your work)

What would it be if it was 10 more?_______ +______ -______

What would it be if it was 10 less?_________

94 is written this way in expanded form:
 a) 90 + 4
 b) 90 + 40
 c) 9 + 40

94 is written this way in place value form:
 a) 90 tens, 4 ones
 b) 9 tens, 4 ones
 c) 9 ones, 40 ones

How do you **read** the number 84?
 a) eighty and four
 b) eighty-four
 c) eight four

Write a **numeral** (number) with 7 tens, and 3 ones: ____________
The **Identity Property of Addition** states that any number added to zero always _________ the _________.

Example: $12 + 0 = _____$

Draw a picture that shows $5 + 5 = 10$

What number is shown with these place value blocks?

12 is the same as: (When in doubt, work it out!)

a) $12 + 12$

b) $20 - 8$

c) $10 + 4$

Commutative Property of Addition—
When the order of addends is changed, the sum stays the same.

Example: $9 + 2 = _____$ and $2 + 9 = _____$

Skip count by:

zeros: 0 ___ ___ ___ ___ ___ ___ ___ ___ ___ 0

ones: 1 ___ ___ ___ ___ ___ ___ ___ ___ ___ 10

twos: 2 ___ ___ ___ ___ ___ ___ ___ ___ ___ 20

fives: 5 ___ ___ ___ ___ ___ ___ ___ ___ ___ 50
Name___________ September Concepts Review (Month 1) #4

Write 76 in expanded form: --

Which digit is in the one's place?____ What is its value?______

Which digit is in the ten's place?____ What is its value?______

Look at the number 77. (Show your work)

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?________

17 is written this way in expanded form:
a) 10 + 7
b) 1 + 7
c) 1 + 70

38 is written this way in place value form:
a) 30 tens, 8 ones
b) 30 tens, 80 ones
c) 3 tens, 8 ones

How do you read the number 34?
a) thirty-four
b) three four
c) three forty

Write a numeral (number) with 3 tens, 7 ones: __________
The **Identity Property of Addition** states that any number added to zero always _________ the _________.

Example: \(19 + 0 = ____ \)

Draw a picture that shows \(6 + 4 = 10 \)

What number is shown with these place value blocks?

![Place Value Blocks](image)

28 is the same as: (When in doubt, work it out!)

a) \(12 + 14 \)
b) \(34 - 2 \)
c) \(13 + 15 \)

Commutative Property of Addition

When the order of **addends** is changed, the **sum** stays the same.

Example: \(3 + 8 = ____ \) and \(8 + 3 = ____ \)

Skip count by:

- **zeros:** 0 ____ ____ ____ ____ ____ ____ ____ ____ ____ 0
- **ones:** 1 ____ ____ ____ ____ ____ ____ ____ ____ 10
- **twos:** 2 ____ ____ ____ ____ ____ ____ ____ ____ 20
- **fives:** 5 ____ ____ ____ ____ ____ ____ ____ ____ 50

© 2004 Lara Dean
Write 365 in **expanded form**: ____________________________

Which digit is in the **one's** place?____ What is its **value**?____

Which digit is in the **ten's** place?____ What is its **value**?____

Which digit is in the **hundred's** place?____ What is its **value**?____

Look at the number 215. (Show your work)

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?______

374 is written this way in expanded form:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>30 + 70 + 4</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>300 + 7 + 4</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>300 + 70 + 4</td>
<td></td>
</tr>
</tbody>
</table>

428 is written this way in place value form:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>4 tens, 2 ones, 8 thousands</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>40 hundreds, 2 tens, 8 ones</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>4 hundreds, 2 tens, 8 ones</td>
<td></td>
</tr>
</tbody>
</table>

How do you **read** the number 287?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>two hundred eight seven</td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>two eighty-seven</td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>two hundred eighty-seven</td>
<td></td>
</tr>
</tbody>
</table>
Write a numeral (number) with 6 hundreds, 4 tens, and 5 ones:

The **Identity Property of Addition** states that any number added to zero always _________ the _________.
Example: \(37 + 0 = \)_______

Draw a picture that shows \(3 + 3 = 6\)

What number is shown with these place value blocks?

25 is the same as: (When in doubt, work it out!)
a) \(12 + 13\)
b) \(35 - 5\)
c) \(13 + 11\)

Commutative Property of Addition--
When the order of **addends** is changed, the **sum** stays the same.
Example: \((10 + 2) + 3 = \)_______ and \((3 + 2) + 10 = \)_______

Skip count by:
- **zeros**: 0 _____ _____ _____ _____ _____ _____ _____ _____ _____ 0
- **ones**: 1 _____ _____ _____ _____ _____ _____ _____ _____ 10
- **twos**: 2 _____ _____ _____ _____ _____ _____ _____ 20
- **fives**: 5 _____ _____ _____ _____ _____ _____ _____ 50

© 2004 Lara Dean
Write 416 in **expanded form**:

Which digit is in the **one's** place?____ What is its **value**?____

Which digit is in the **ten's** place?____ What is its **value**?____

Which digit is in the **hundred's** place?____ What is its **value**?____

Look at the number 537.

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?______

286 is written this way in expanded form:

a) 200 + 80 + 6
b) 2 + 8 + 6
c) 20 + 80 + 60

487 is written this way in place value form:

a) 4 hundreds, 8 hundreds, 7 hundreds
b) 4 hundreds, 8 tens, 7 ones
c) 4 hundreds, 7 tens, 8 ones

How do you **read** the number 486?

a) four hundred eighty-six
b) four hundred and eighty and six
c) two hundred and eighty-six
Write a numeral (number) with 3 hundreds, 5 tens, and 3 ones: ___________

The **Identity Property of Addition** states that any number added to zero always ________ ________ ________.
Example: 57 + 0 =__________

Draw a picture that shows 6 + 6 = 12

What number is shown with these place value blocks?

13 is the same as: (When in doubt, work it out!)
a) 12 + 4
b) 20 - 6
c) 10 + 3

Commutative Property of Addition--
When the order of addends is changed, the sum stays the same.
Example: (1 + 3) + 5=_______ and (5 + 3) +1=_______

Skip count by:
zeros: 0 _____ _____ _____ _____ _____ _____ 0
ones: 1 _____ _____ _____ _____ _____ _____ 10
twos: 2 _____ _____ _____ _____ _____ _____ 20
fives: 5 _____ _____ _____ _____ _____ _____ 50

© 2004 Lara Dean
Write 283 in expanded form: ____________________________

Which digit is in the one’s place?____ What is its value?_____

Which digit is in the ten’s place?____ What is its value?_____

Which digit is in the hundred’s place?____ What is its value?_____

Look at the number 846. (Show your work)

What would it be if it was 10 more?_______ +_______ -_______

What would it be if it was 10 less?________

348 is written this way in expanded form:
 a) 30 + 80 + 4
 b) 300 + 8 + 4
 c) 300 + 40 + 8

587 is written this way in place value form:
 a) 5 tens, 8 ones, 7 thousands
 b) 5 hundreds, 8 tens, 7 ones
 c) 500 hundreds, 20 tens, 8 ones

How do you read the number 347?
 a) three hundred forty-seven
 b) three hundred plus forty-seven
 c) three hundreds and forty-seven ones
Write a numeral (number) with 5 hundreds, 4 tens, and 8 ones:

The **Identity Property of Addition** states that any number added to zero always ________ ________ ________.
Example: 75 + 0 =_______

Draw a picture that shows 3 + 7 = 10

What number is shown with these place value blocks?

32 is the same as: (When in doubt, work it out!)
a) 14 + 12
b) 40 - 8
c) 20 + 14

Commutative Property of Addition--
When the order of *addends* is changed, the *sum* stays the same.
Example: (17 + 2) + 1 =_______ and (2 + 17) + 1 =_______

Skip count by:
zeros: 0 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ 0
ones: 1 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ 10
twos: 2 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ 20
fives: 5 ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ ______ 50

© 2004 Lara Dean
Write 479 in expanded form: __________________________

Which digit is in the one's place?____ What is its value?____

Which digit is in the ten's place?____ What is its value?____

Which digit is in the hundred's place?____ What is its value?____

Look at the number 458.

What would it be if it was 10 more?_______ +_______ -_______

What would it be if it was 10 less?_______

769 is written this way in expanded form:
 a) 70 + 60 + 0
 b) 700 + 90 + 6
 c) 700 + 60 + 9

739 is written this way in place value form:
 a) 7 tens, 3 ones, 9 hundreds
 b) 700 hundreds, 30 tens, 9 ones
 c) 7 hundreds, 3 tens, 9 ones

How do you read the number 572?
 a) five hundred twenty-seven
 b) five hundred seventy-two
 c) five hundred seventy
Write a numeral (number) with 2 hundreds, 7 tens, and 2 ones:

The Identity Property of Addition states that any number added to zero always _________ the _________.
Example: 93 + 0 =_______

Draw a picture that shows 2 + 3 + 5 = 10

What number is shown with these place value blocks?

14 is the same as: (When in doubt, work it out!)
a) 6 + 6
b) 7 + 7
c) 8 + 8

Commutative Property of Addition--
When the order of addends is changed, the sum stays the same.
Example: (10 + 12) + 4 =_______ and (4 + 12) + 10 =_______

Skip count by:
zeros: 0 _____ _____ _____ _____ _____ _____ _____ _____ 0
ones: 1 _____ _____ _____ _____ _____ _____ _____ 10
twos: 2 _____ _____ _____ _____ _____ _____ 20
fives: 5 _____ _____ _____ _____ _____ _____ 50

© 2004 Lara Dean
Write 1,479 in **expanded form**: ________________________________

Which digit is in the **one's** place?_____ What is its value?_____
Which digit is in the **ten's** place?_____ What is its value?_____
Which digit is in the **hundred's** place?_____ What is its value?_____
Which digit is in the **thousand's** place?_____ What is its value?_____

Look at the number 167.
(Show your work)

What would it be if it was 10 more?______ +______ -______
What would it be if it was 10 less?________

6,291 is written this way in expanded form:
 a) 600 + 200 + 900 + 100
 b) 6 + 2 + 9 + 1
 c) 6,000 + 200 + 90 + 1

2,180 is written this way in place value form:
 a) 2 hundred, 8 tens
 b) 2 thousand, 1 hundred, 8 tens
 c) 2 hundreds, 1 ten, 8 ones

How do you **read** the number 2,870?
 a) two hundred eighty-seven
 b) two thousand eighty-seven
 c) two thousand, eight hundred seventy
Write a numeral (number) with 8 thousands, 6 hundreds, 4 tens, and 5 ones: __________

The **Identity Property of Addition** states that any number added to zero always _________ _________ _________.

Example: 143 + 0 =____

Draw a picture that shows 4 + 4 + 7 = 15

What number is shown with these place value blocks?

50 is the same as: (When in doubt, work it out!)

a) 60 - 20
b) 20 + 20
c) 25 + 25

Commutative Property of Addition--

When the order of **addends** is changed, the **sum** stays the same.

Example: (3 + 2) + 9 =_______ and (9 + 2) + 3 =_______

Skip count by:

- zeros: 0 ____ ____ ____ ____ ____ ____ ____ ____ 0
- ones: 1 ____ ____ ____ ____ ____ ____ ____ ____ 10
- twos: 2 ____ ____ ____ ____ ____ ____ ____ ____ 20
- fives: 5 ____ ____ ____ ____ ____ ____ ____ ____ 50

© 2004 Lara Dean
Write 2,437 in expanded form: ____________________________

Which digit is in the one’s place?____ What is its value?____

Which digit is in the ten’s place?____ What is its value?____

Which digit is in the hundred’s place?____ What is its value?____

Which digit is in the thousand’s place?____ What is its value?____

Look at the number 373.

What would it be if it was 10 more?______ +______ -______

What would it be if it was 10 less?________

1,324 is written this way in expanded form:
 a) 1,000 + 300 + 20 + 4
 b) 1 + 3 + 2 + 4
 c) 1,000 + 3,000 + 200 + 40

4,382 is written this way in place value form:
 a) 4 thousand, 8 hundreds, 3 tens, 2 ones
 b) 4 thousand, 3 hundred, 8 tens
 c) 4 thousands, 3 hundreds, 8 tens, 2 ones

How do you read the number 8,860?
 a) eight thousand, eight hundred sixty
 b) eight thousand, eight hundred and sixty
 c) eight thousand, eighty-six
Write a numeral (number) with 2 thousands, 0 hundreds, 4 tens, and 2 ones: __________

The Identity Property of Addition states that any number added to zero always _________ the _________.
Example: 27 + 0 =____

Draw a picture that shows 2 + 2 + 6 = 10

What number is shown with these place value blocks?

17 is the same as: (When in doubt, work it out!)
 a) 6 + 11
 b) 20 - 4
 c) 9 + 9

Commutative Property of Addition --
When the order of addends is changed, the sum stays the same.
Example: (3 + 1) + 2 =_______ and (2 + 3) + 1 =_____

Skip count by:
zeros: 0 ____ ____ ____ ____ ____ ____ ____ ____ ____ 0
ones: 1 ____ ____ ____ ____ ____ ____ ____ ____ ____ 10
twos: 2 ____ ____ ____ ____ ____ ____ ____ ____ ____ 20
fives: 5 ____ ____ ____ ____ ____ ____ ____ ____ ____ 50
Write 9,409 in expanded form: __________________________

Which digit is in the one's place?____ What is its value?____
Which digit is in the ten's place?____ What is its value?____
Which digit is in the hundred's place?____ What is its value?____
Which digit is in the thousand's place?____ What is its value?____

Look at the number 241.

What would it be if it was 10 more?_______ +______ -______

What would it be if it was 10 less?________

3,128 is written this way in expanded form:

a) 3,000 + 100 + 20 + 80
b) 3 + 1 + 2 + 8
3,000 + 100 + 20 + 8

7,290 is written this way in place value form:

a) 7 hundreds, 2 tens, 9 ones
b) 7 thousands, 2 hundreds, 9 tens
7 thousands, 2 hundreds, 9 ones

c) 7 thousands, 2 hundreds, 9 ones

How do you read the number 8,045?

a) eight hundred forty-five
b) eight thousand forty-five
c) eight thousand four hundred five

© 2004 Lara Dean
Write a numeral (number) with 6 thousands, 0 hundreds, 0 tens, and 5 ones: ____________

The Identity Property of Addition states that any number added to zero always ___________ the ___________.
Example: 0 + 25 =____

Draw a picture that shows 1 + 3 + 6 = 10

What number is shown with these place value blocks?

42 is the same as: (When in doubt, work it out!)
a) 12 + 20
b) 22 + 20
c) 34 + 12

Commutative Property of Addition--
When the order of addends is changed, the sum stays the same.
Example: (2 + 5) + 9 =_____ and (9 + 2) + 5 =______

Skip count by:
zeros: 0 _____ _____ _____ _____ _____ _____ _____ _____ _____ 0
ones: 1 _____ _____ _____ _____ _____ _____ _____ _____ 10
twos: 2 _____ _____ _____ _____ _____ _____ _____ _____ 20
fives: 5 _____ _____ _____ _____ _____ _____ _____ _____ 50
Name________________ September Concepts Review (Month 1) #12

Write 2,075 in expanded form: ________________________________

Which digit is in the one's place?____ What is its value?_____

Which digit is in the ten's place?____ What is its value?_____

Which digit is in the hundred's place?____ What is its value?_____

Which digit is in the thousand's place?____ What is its value?_____

Look at the number 310. (Show your work)

What would it be if it was 10 more?_______ +_______ -_______

What would it be if it was 10 less?________

8,020 is written this way in expanded form:
 a) 8,000 + 200
 b) 8,000 + 2
 c) 8,000 + 20

9,500 is written this way in place value form:
 a) 9 hundreds, 5 tens
 b) 9 thousands, 5 hundreds
 c) 9 thousands, 5 tens

How do you read the number 1,070?
 a) one thousand seventy
 b) one thousand seven hundred
 c) one thousand seven

© 2004 Lara Dean
Write a numeral (number) with 5 thousands, 0 hundreds, 1 tens, and 5 ones: __________

The Identity Property of Addition states that any number added to zero always _________ the _________.
Example: 55 + 0 =____

Draw a picture that shows 3 + 3 + 3 = 9

What number is shown with these place value blocks?

23 is the same as:
(When in doubt, work it out!)

a) 26 - 3
b) 11 + 15
c) 12 + 9

Commutative Property of Addition--
When the order of addends is changed, the sum stays the same.
Example: (5 + 3) + 3 =______ and (5 + 5) + 3 =______

Skip count by:
zeros: 0 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 0
ones: 1 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 10
twos: 2 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 20
fives: 5 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ 50
The **even** numbers are really great, they end in 0, 2, 4, 6, and 8. The **odd** numbers aren’t so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers **even** or **odd**? Circle your answer.

<table>
<thead>
<tr>
<th>Number</th>
<th>Even</th>
<th>Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>83</td>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>93</td>
<td>e</td>
<td>o</td>
</tr>
</tbody>
</table>

Put these **whole numbers** in their correct place on the number line: 3, 7, 1

1. 0 5 10

Compare these whole numbers using `<`, `>`, or `=`

<table>
<thead>
<tr>
<th>Number 1</th>
<th>Number 2</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>316</td>
<td>361</td>
<td></td>
</tr>
</tbody>
</table>

Polygon - a closed plane figure made of 3 or more line segments.

Quadrilateral - a polygon with four sides and four angles.

How many sides does this **polygon** have?_____
How many corners does it have?_____
Is this polygon a **quadrilateral**? yes no

Combine two or more polygons to create a polygon design.
Find the sum to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{array}{cccc}
34 & 78 & 26 & 17 \\
+12 & +46 & +15 & +11
\end{array}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__
__
__

2) Which of these strategies did they use to help them?

a) mental math c) a calculator e) a paper and pencil
b) estimating d) rounding f) other____________

Draw a picture showing 10 - 4 = 6

Write a story problem using this number sentence: 4 + 7 = 11

Skip count by:
threes: 3 _____ _____ _____ _____ _____ _____ _____ _____ 30
fours: 4 _____ _____ _____ _____ _____ _____ _____ _____ 40
The **even** numbers are really great, they end in 0, 2, 4, 6, and 8. The **odd** numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers **even** or **odd**? Circle your answer.

<table>
<thead>
<tr>
<th></th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>even</td>
<td>odd</td>
</tr>
</tbody>
</table>

Put these **whole numbers** in their correct place on the **number line**: 2, 4, 6

```
0 . . . . 5 . . . . . 10
```

Compare these whole numbers using **<**, **>**, or **=**

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>125</td>
<td>251</td>
<td>316</td>
</tr>
</tbody>
</table>

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this **polygon** have? ______
How many corners does it have? ______
Is this polygon a **quadrilateral**? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{array}{cccc}
46 & 36 & 49 & 39 \\
+12 & +46 & +15 & +11 \\
\end{array}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: _________________________________

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other__________

Draw a picture showing 8 - 4 = 4

Write a story problem using this **number sentence**: 5 + 5 = 10

Skip count by:
 threes: 3 ____ ____ ____ ____ ____ ____ ____ ____ ____ 30
 fours: 4 ____ ____ ____ ____ ____ ____ ____ ____ ____ 40
The **even** numbers are really great, they end in 0, 2, 4, 6, and 8. The **odd** numbers aren’t so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers **even** or **odd**? Circle your answer.

33 **even** even odd 26 **even** odd 53 **even** odd

Put these **whole numbers** in their correct place on the **number line**: 1, 6, 9

```
0 . . . . . . . . 5 . . . . . . 10
```

Compare these whole numbers using **<** **>** or **=**

- 64 **** 63
- 15 **** 17
- 346 **** 356
- 361 **** 352

Polygon - a closed plane figure made of 3 or more line segments. **Quadrilateral** - a polygon with four sides and four angles.

- How many sides does this **polygon** have? _____
- How many corners does it have? _____
- Is this polygon a **quadrilateral**? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{align*}
35 & \quad 25 & \quad 36 & \quad 17 \\
+45 & \quad +26 & \quad +36 & \quad +16 \\
\end{align*}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?

 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other_________

Draw a picture showing 12 - 6 = 6

Write a story problem using this **number sentence**: 6 + 7 = 13

Skip count by:
 threes: 3 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 30
 fours: 4 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 40
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

14 even odd 25 even odd 73 even odd

Put these whole numbers in their correct place on the number line: 3, 4, 6

0 5 10

Compare these whole numbers using < > or =

35 39 12 52
263 136 125 126

Polygon - a closed plane figure made of 3 or more line segments. Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have? _____

How many corners does it have? _____

Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the sum to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{align*}
36 & \quad 64 & \quad 36 & \quad 46 \\
+ & \quad 36 & \quad +46 & \quad +61 & \quad +61
\end{align*}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other__________

Draw a picture showing \(10 - 5 = 5\)

Write a story problem using this number sentence: \(8 + 4 = 12\)

Skip count by:
 threes: 3 ___ ___ ___ ___ ___ ___ ___ ___ ___ 30
 fours: 4 ___ ___ ___ ___ ___ ___ ___ ___ ___ 40

© 2004 Lara Dean
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren’t so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

62 even odd 66 even odd 36 even odd

Put these whole numbers in their correct place on the number line: 10, 40, 90

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare these whole numbers using < > or =

35 36 36 36

54 53 345 354

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have? _____
How many corners does it have? _____
Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the sum to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{align*}
32 & \quad 64 & \quad 47 & \quad 53 \\
+ & \quad 53 & \quad + & \quad 36 & \quad + & \quad 63 & \quad + & \quad 63
\end{align*}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__
__
__

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other__________

Draw a picture showing 7 - 4 = 3

Write a story problem using this number sentence: 2 + 9 = 11

Skip count by:
 threes: 3 _____ _____ _____ _____ _____ _____ _____ _____ 30
 fours: 4 _____ _____ _____ _____ _____ _____ _____ _____ 40
The even numbers are really great, they end in 0, 2, 4, 6, and 8.
The odd numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

32 even odd
83 even odd
93 even odd

Put these whole numbers in their correct place on the number line: 30, 60, 90

0 50 100

Compare these whole numbers using < > or =

24 42
24 34
342 324
342 361

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have? _____
How many corners does it have? _____
Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

53 + 46 = 99
36 + 25 = 61
95 + 15 = 110
84 + 74 = 158

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: __
 __
 __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding
 f) other__________

Draw a picture showing 15 - 5 = 10

Write a story problem using this **number sentence**: 5 + 10 = 15

Skip count by:
 threes: 3 ____ ____ ____ ____ ____ __ ____ ____ ____ __ 30
 fours: 4 ____ ____ ____ ____ ____ ____ ____ ____ ____ 40

© 2004 Lara Dean
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

62 even odd 37 even odd 85 even odd

Put these whole numbers in their correct place on the number line: 10, 20, 70

| 0 | 50 | 100 |

Compare these whole numbers using < > or =

74 64 53 54
166 166 165 156

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have? _____
How many corners does it have? _____
Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{array}{cccc}
35 & 74 & 85 & 47 \\
+45 & +46 & +15 & +86 \\
\end{array}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?

a) mental math b) estimating c) a calculator d) rounding e) a paper and pencil f) other__________

Draw a picture showing 20 - 5 = 15

Write a story problem using this **number sentence**: 8 + 8 = 16

Skip count by:

- threes: 3 _____ _____ _____ _____ _____ _____ _____ _____ 30
- fours: 4 _____ _____ _____ _____ _____ _____ _____ _____ 40
The **even** numbers are really great, they end in 0, 2, 4, 6, and 8. The **odd** numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

95 even odd
58 even odd
47 even odd

Put these whole numbers in their correct place on the **number line:** 40, 60, 80

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compare these whole numbers using < > or =

35 53
35 35
263 265
634 361

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this **polygon** have? _____
How many corners does it have? _____
Is this polygon a **quadrilateral**? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>36</td>
<td>85</td>
<td>68</td>
</tr>
<tr>
<td>+25</td>
<td>+74</td>
<td>+47</td>
<td>+85</td>
</tr>
</tbody>
</table>

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it: __
 __
 __

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other____________

Draw a picture showing 12 - 7 = 5

Write a story problem using this number sentence: 2 + 10 = 12

Skip count by:
- threes: 3 ___ ___ ___ ___ ___ ___ ___ ___ ___ 30
- fours: 4 ___ ___ ___ ___ ___ ___ ___ ___ ___ 40
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren’t so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

32 even odd 83 even odd 93 even odd

Put these whole numbers above the letter which represents their correct place on the number line: 33, 47, 89

0 A B 50 C 100

Compare these whole numbers using < > or =

65 □ 56 58 □ 85

657 □ 675 685 □ 684

Polygon - a closed plane figure made of 3 or more line segments. Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have? _____

How many corners does it have? _____

Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the sum to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{align*}
57 & \quad 68 & \quad 48 & \quad 47 \\
+96 & \quad +47 & \quad +95 & \quad +47
\end{align*}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__
__
__

2) Which of these strategies did they use to help them?

a) mental math

b) estimating

c) a calculator

d) rounding

e) a paper and pencil

f) other__________

draw a picture showing 9 - 4 = 5

Write a story problem using this number sentence: 6 + 8 = 14

Skip count by:

- threes: 3 _____ _____ _____ _____ _____ _____ _____ _____ 30
- fours: 4 _____ _____ _____ _____ _____ _____ _____ _____ 40
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

48 even odd 49 even odd 50 even odd

Put these whole numbers above the letter which represents their correct place on the number line: 13, 67, 25

0 A B 50 C 100

Compare these whole numbers using < > or =

16 18 71 17
120 129 816 381

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have?_____
How many corners does it have?_____
Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{array}{cccc}
63 & 69 & 36 & 62 \\
+46 & +38 & +95 & +63
\end{array}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__
__
__

2) Which of these strategies did they use to help them?

a) mental math c) a calculator e) a paper and pencil

b) estimating d) rounding f) other__________

Draw a picture showing 20 - 8 = 12

Write a story problem using this **number sentence**: \(8 + 7 = 15\)

Skip count by:

threes: 3 _____ _____ _____ _____ _____ _____ _____ 30
fours: 4 _____ _____ _____ _____ _____ _____ _____ 40
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren’t so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

63 even odd 25 even odd 40 even odd

Put these whole numbers above the letter which represents their correct place on the number line: 42, 37, 12

Compare these whole numbers using < > or =

86 18 90 99

738 783 198 189

Polygon - a closed plane figure made of 3 or more line segments. Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have?_____

How many corners does it have?_____

Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the **sum** to the following problems. (Remember the sum is the answer to an addition problem).

\[
\begin{array}{cccc}
34 & 78 & 26 & 17 \\
+ 64 & + 90 & + 96 & + 49 \\
\end{array}
\]

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

__

__

__

2) Which of these strategies did they use to help them?

 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other__________

Draw a picture showing 8 - 4 = 4

Write a story problem using this **number sentence**: 3 + 3 = 9

Skip count by:

threes: 3 ____ ____ ____ ____ ____ ____ ____ ____ 30

fours: 4 ____ ____ ____ ____ ____ ____ ____ ____ 40

© 2004 Lara Dean
The even numbers are really great, they end in 0, 2, 4, 6, and 8. The odd numbers aren't so hard to find, they end in 1, 3, 5, 7, and 9!

Are these numbers even or odd? Circle your answer.

10 even odd
15 even odd
20 even odd

Put these whole numbers above the letter which represents their correct place on the number line:

40, 65, 22

0 A B 50 C 100

Compare these whole numbers using < > or =

47 59
18 17
121 129
387 287

Polygon - a closed plane figure made of 3 or more line segments.
Quadrilateral - a polygon with four sides and four angles.

How many sides does this polygon have?_____
How many corners does it have?_____
Is this polygon a quadrilateral? yes no

Combine two or more polygons to create a design.
Find the sum to the following problems. (Remember the sum is the answer to an addition problem).

56 + 19 = 75
77 + 52 = 129
26 + 47 = 73
18 + 41 = 59

1) Ask a grown up about a time when they needed to use math this week. Briefly describe it:

2) Which of these strategies did they use to help them?
 a) mental math c) a calculator e) a paper and pencil
 b) estimating d) rounding f) other ________

Draw a picture showing 9 - 5 = 4

Write a story problem using this number sentence: 7 + 9 = 16

Skip count by:
threes: 3 ___ ___ ___ ___ ___ ___ ___ ___ 30
fours: 4 ___ ___ ___ ___ ___ ___ ___ ___ 40

© 2004 Lara Dean
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

30 is ________________ 4

30 is ________________ 32.

30 is ________________ 60.

Find the sums of these addends:

\[
\begin{array}{ccc}
24 & 375 & $1.16 \\
+74 & +353 & +$2.85
\end{array}
\]

Look at the following number:

\[
672
\]

What is 100 more?_______ What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{cccc}
34 & 78 & 26 & 17 \\
-12 & -46 & -15 & -11
\end{array}
\]
Predict what will happen:

A bag has 2 yellow candies and 15 blue candies. If you pick one out of the bag is it more likely to be yellow or blue? __________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):

2, 4, 6, 8, _____, _____, _____

Extend this repeating pattern (it repeats):

A B B A B B _____ _____ _____

How many total kids voted for their favorite gum?_______
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

20 is _________________ 5.

20 is _________________ 40.

20 is _________________ 25.

Find the sums of these addends:

\[
\begin{array}{ccc}
22 & +64 & 35 \\
753 & +333 & 79 \\
& & 22 \\
& & 16 \\
\end{array}
\]

Look at the following number:

523

What is 100 more?______ What is 100 less?______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{ccc}
35 & -12 & 22 \\
79 & -46 & 16 \\
22 & -15 & -11 \\
\end{array}
\]
Predict what will happen:

There are 10 red candies and 5 green candies in a jar. Are you more likely to get red or green if you’re not looking? ________

Look at this representation of a cube.

1) How many faces (sides) are there? ______

2) How many edges are there? ______

3) How many vertices (corners) are there? ______

Extend this growing pattern (it gets bigger):

1, 3, 5, 7, _____, _____, _____

Extend this repeating pattern (it repeats):

A A B B _____ _____ _____ _____

How many more people voted for Catwoman than Batman? ______
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

15 is ___________________ 20.

15 is ___________________ 30.

15 is ___________________ 6.

Find the sums of these addends:

\[
\begin{array}{ccc}
46 & +74 & 364 + 353 \\
364 & + 353 & 4.64 + 3.73 \\
\end{array}
\]

Look at the following number:

356

What is 100 more?_______ What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{ccc}
53 & - 12 & 63 - 46 \\
26 & - 15 & 74 - 47 \\
\end{array}
\]
Predict what would happen if you flipped a penny 10 times. Would it be more likely to land on heads or tails? _________________
Why?___

Look at this representation of a cube.
1) How many faces (sides) are there? _____
2) How many edges are there? _____
3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
3, 6, 9, 12, _____, _____, _____

Extend this repeating pattern (it repeats):
A B A A A B A A _____ _____ _____ _____

Fieldtrip Notes

How many notes were returned on Thursday?_____
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

7 is _________________ 14.

7 is _________________ 6.

7 is _________________ 60.

Find the sums of these addends:

\[
\begin{align*}
52 + 35 &= 87 \\
523 + 364 &= 887 \\
$1.35 + $2.74 &= $4.09
\end{align*}
\]

Look at the following number:

\[473\]

What is 100 more?_______ What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{align*}
64 - 25 &= 39 \\
63 - 35 &= 28 \\
63 - 15 &= 48 \\
37 - 26 &= 11
\end{align*}
\]
Predict what would happen if you closed your eyes and touched a world map. Would you be more likely to touch land or water?

Why?

Look at this representation of a cube.

1) How many faces (sides) are there? ____

2) How many edges are there? ____

3) How many vertices (corners) are there? ____

Extend this growing pattern (it gets bigger):

4, 8, 12, 16, ____ , ____ , ____

Extend this repeating pattern (it repeats):

A B C A B C ____ ____ ____ ____

Favorite Pets

Which pet is the least favorite? ______
Use the phrases **larger than**, **half of**, or **close to** to complete the following mathematical statements.

50 is _________________ 100.

50 is _________________ 48.

50 is _________________ 20.

Find the **sums** of these **addends**:

\[
\begin{align*}
36 & + 74 = 110 \\
763 & + 353 = 1,116 \\
$7.76 & + $5.85 = $13.61
\end{align*}
\]

Look at the following number:

\[
483
\]

What is 100 more?_______ What is 100 less?_______

Find the **differences** in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{align*}
96 & - 73 = 23 \\
74 & - 36 = 38 \\
73 & - 36 = 37 \\
66 & - 21 = 45
\end{align*}
\]
Predict what would happen if there were two blue basketballs and one orange basketball in a bag. If you closed your eyes and took one out, which would you be most likely to pick? ____________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
A AA AAA AAAA __________, __________, ________

Extend this repeating pattern (it repeats):
» # # » # # » # ____ ____ _____ _____

How many more students like their 3rd grade teacher better than their Kindergarten teacher?__________
Use the phrases **larger than**, **half of**, or **close to**

to complete the following mathematical statements.

42 is __________________ 10.

42 is __________________ 39.

42 is __________________ 84.

Find the **sums** of these **addends**:

\[
\begin{align*}
46 & \quad 463 & \quad \$3.46 \\
+56 & \quad +564 & \quad +$6.85
\end{align*}
\]

Look at the following number:

\[
647
\]

What is 100 more? ________
What is 100 less? ________

Find the **differences** in these subtraction problems. (Remember
the difference is the answer to a subtraction problem).

\[
\begin{align*}
47 & \quad 48 & \quad 83 & \quad 83 \\
-23 & \quad -18 & \quad -26 & \quad -38
\end{align*}
\]
Predict what would happen if you closed your eyes and touched the classroom calendar. Would you be more likely to touch a school day or a weekend day? _______________ Why? _______________

Look at this representation of a cube.

1) How many faces (sides) are there? ____

2) How many edges are there? ____

3) How many vertices (corners) are there? ____

Extend this growing pattern (it gets bigger):
X 0 , XX00, XXX000, __________, __________, __________

Extend this repeating pattern (it repeats):
X O X O X O _______ _______ _______ ______

[Bar graph: Number of Family Cars]

How many cars do most families have? ________
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

44 is _________________ 4.

44 is _________________ 40.

44 is _________________ 88.

Find the sums of these addends:

\[
\begin{align*}
24 &+ 53 \\
745 &+ 363 \\
\$ 4.17 &+ \$ 4.75
\end{align*}
\]

Look at the following number:

734

What is 100 more?______ What is 100 less?______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{align*}
52 &- 12 \\
47 &- 46 \\
62 &- 45 \\
63 &- 36
\end{align*}
\]
Predict what would happen if you closed your eyes and touched a date on the calendar. Would you be more likely to touch an even or odd number? even odd Why? ________________________________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
5, 10, 15, 20, ______, ______, ______

Extend this repeating pattern (it repeats):
10, 20, 20, 10, 20, 20, ______ ______ ______

<table>
<thead>
<tr>
<th>Flavors</th>
<th>Number of Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cola</td>
<td>7</td>
</tr>
<tr>
<td>root beer</td>
<td>7</td>
</tr>
<tr>
<td>orange</td>
<td>8</td>
</tr>
<tr>
<td>lemon-lime</td>
<td>3</td>
</tr>
</tbody>
</table>

How many fewer votes did lemon-lime soda get than the other sodas?_____
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

25 is _________________ 20.

25 is _________________ 2.

25 is _________________ 40.

Find the sums of these addends:

\[
\begin{array}{ccc}
47 & +74 & 465 + 483 \\
\hline
464 & 948 & 948 \\
\end{array}
\]

$5.38 +$2.85

Look at the following number:

888

What is 100 more?______ What is 100 less?______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{ccc}
92 & 93 & 38 \\
\hline
-38 & -37 & -15 \\
57 & & -35 \\
\end{array}
\]
Predict what would happen if you rolled a pair of dice. Would you be more likely to get the same numbers on both dice or different numbers? ____________ Why? ____________________

Look at this representation of a cube.
1) How many faces (sides) are there? _____
2) How many edges are there? _____
3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
+ ++ +++ ++++, __________, __________, __________

Extend this repeating pattern (it repeats):
□ □ □ □ □ □ □ □ □ _____ _____ _____ _____ _____

Favorite School Lunch

Which school lunch is the favorite of kids? ________________
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

33 is _________________ 30.
33 is _________________ 66.
33 is _________________ 10.

Find the sums of these addends:

\[
\begin{array}{ccc}
39 & 369 & 6.63 \\
+39 & +209 & +3.92 \\
\end{array}
\]

Look at the following number:

398

What is 100 more?_______ What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{cccc}
50 & 70 & 20 & 40 \\
-12 & -46 & -15 & -11 \\
\end{array}
\]
Predict what would happen if you took 10 free throw shots in basketball. Would you be more likely to make the shots or miss them? ___________ Why?____________________________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
1, 4, 7, 11, ______, ______, ______

Extend this repeating pattern (it repeats):
🌟 🌙 🌟 🌙 🌑 🌙 🌑 🌙 ______ ______ ______

<table>
<thead>
<tr>
<th>Likes Fruit</th>
<th>Likes Vegetables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andre</td>
<td>James</td>
</tr>
<tr>
<td>Anna</td>
<td>Antonio</td>
</tr>
<tr>
<td>Julio</td>
<td>Maria</td>
</tr>
<tr>
<td>Maria</td>
<td>Carlos</td>
</tr>
<tr>
<td>Evan</td>
<td>Jada</td>
</tr>
<tr>
<td>Teresa</td>
<td>Olivia</td>
</tr>
</tbody>
</table>

How many kids like fruit and vegetables?_______
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

63 is __________________ 126.

63 is __________________ 60.

63 is __________________ 5.

Find the sums of these addends:

\[
\begin{align*}
34 + 14 &= 48 \\
523 + 253 &= 776 \\
\$3.53 + \$3.52 &= \$7.05
\end{align*}
\]

Look at the following number:

779

What is 100 more?_______
What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{align*}
21 - 12 &= 9 \\
51 - 46 &= 5 \\
21 - 15 &= 6 \\
31 - 11 &= 20
\end{align*}
\]
Predict what would happen at lunch if your class could choose chocolate milk or plain milk. Which would they be most likely to pick?_______________ Why?__________________________________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):
3, 5, 7, 9, ______, ______, _______

Extend this repeating pattern (it repeats):
A A C B B C A A C B B C _____ _____ _____ _____

<table>
<thead>
<tr>
<th>Day of the Week</th>
<th>Number of Students Who Did Their Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>20</td>
</tr>
<tr>
<td>Tuesday</td>
<td>15</td>
</tr>
<tr>
<td>Wednesday</td>
<td>18</td>
</tr>
<tr>
<td>Thursday</td>
<td>24</td>
</tr>
<tr>
<td>Friday</td>
<td>19</td>
</tr>
</tbody>
</table>

Which day do you think the teacher was most happy with the students?________________
Use the phrases larger than, half of, or close to to complete the following mathematical statements.

5 is ________________ 1.

5 is ________________ 10.

5 is ________________ 6.

Find the sums of these addends:

\[
\begin{align*}
38 & \quad 738 & \quad $4.63 \\
+28 & \quad +398 & \quad +$4.64
\end{align*}
\]

Look at the following number:

\[
543
\]

What is 100 more?_______

What is 100 less?_______

Find the differences in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{align*}
64 & \quad 45 & \quad 63 & \quad 74 \\
-37 & \quad -34 & \quad -27 & \quad -65
\end{align*}
\]
Predict what would happen if your teacher let you choose an eraser out of a box. If 20 were pink and 10 were red, which would you be more likely to pick? ________ Why?________________

Look at this representation of a cube.
1) How many faces (sides) are there? _____
2) How many edges are there? _____
3) How many vertices (corners) are there? ______

Extend this growing pattern (it gets bigger):
100, 200, 300, 400, ______, ______, ______

Extend this repeating pattern (it repeats):
M A T H ! M A T H ! _____ _____ _____ _____ _____

Favorite Seasons

<table>
<thead>
<tr>
<th>Season</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Votes</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

1) How many students like winter the best?_______

2) How many more students like summer than winter?_______

3) Which season do you like best?___________
Use the phrases **larger than**, **half of**, or **close to** to complete the following mathematical statements.

- 89 is _________________ 50.
- 89 is _________________ 90.
- 89 is _________________ 178.

Find the **sums** of these addends:

\[
\begin{array}{ccc}
36 & 371 & \$2.22 \\
+25 & +252 & +\$5.85 \\
\end{array}
\]

Look at the following number:

\[
525
\]

What is 100 more?_______ What is 100 less?_______

Find the **differences** in these subtraction problems. (Remember the difference is the answer to a subtraction problem).

\[
\begin{array}{cccc}
73 & 74 & 76 & 71 \\
-45 & -46 & -15 & -11 \\
\end{array}
\]
Predict what the weather will be like tomorrow. Will it most likely be sunny, rainy, or snowy? ____________ Why? ____________

Look at this representation of a cube.

1) How many faces (sides) are there? _____

2) How many edges are there? _____

3) How many vertices (corners) are there? _____

Extend this growing pattern (it gets bigger):

1, 10, 100, ______, ________, ____________

Extend this repeating pattern (it repeats):

I ❤️ 😊 I ❤️ 😊 _______ _______ _______

In which year did the 3rd grade have the most students? ______

© 2004 Lara Dean
Circle the correct answer:

Tomorrow our class will go on a field trip to Peru for the day.

- certain
- likely
- possible
- impossible

Five Day Forecast

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>☀</td>
<td>⚡</td>
<td>⚡</td>
<td>☀</td>
<td>☀</td>
</tr>
</tbody>
</table>

Make a prediction about what people would do if they saw this 5 Day Weather Forecast: ________________________________

Why?___

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **pattern** do you see in the picture?

__

__

__

Write a story problem using this **number sentence**: \(11 - 7 = 4\)

__

__

__

Are these two polygons **congruent** (the same size and the same shape)?

Yes No

__

Draw a line of **symmetry** on this triangle:

__

__

Find the **numerical value** being represented by the **symbol** that will make the statement true:

\[18 - \bigtriangleup = 8\]

(Hint...You can use fact families to help you!)

© 2004 Lara Dean
Circle the correct answer:

It will snow tomorrow.

certain likely possible impossible

Our Favorites!

Ice Cream Cake

Jill Eric Emily
Kami Juan
Lori Jacob Lara Pat
Clara

Make a **prediction** about what treat this class will have at their party based on this Venn Diagram: _______________________

Why?___

The **temperature** on this **thermometer** is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **pattern** do you see in the picture?

__
__
__

Write a story problem using this **number sentence**: 12 - 6 = 6

__
__
__

Are these two polygons **congruent** (the same size and the same shape)?

____ ____

yes no

Draw 2 lines of **symmetry** on this rectangle:

__

Find the **numerical value** being represented by the **symbol** that will make the statement true:

\[5 + \, \boxed{} \, = 8 \]

(Hint...You can use fact families to help you!)

© 2004 Lara Dean
Circle the correct answer:

At least one person in Utah will get sick this week.

certain likely possible impossible

Plants That Survived

Light	☀️ ☀️ ☀️ ☀️ ☀️ ☀️
Water	☀️ ☀️ ☀️ ☀️ ☀️ ☀️
Light & Water	☀️ ☀️ ☀️ ☀️ ☀️ ☀️ ☀️

= 1 plant

Make a prediction about what plants need to live based on this pictograph: ________________________________

Why?__

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **patterns** do you see in this picture?

__

__

Write a story problem using this **number sentence**: 10 - 5 = 5

__

Are these two polygons **congruent** (the same size and the same shape)?

yes no

__

Draw two lines of **symmetry** on this shape:

__

Find the **numerical value** being represented by the **symbol** that will make the statement true:

8 + __ = 16

(Hint...You can use fact families to help you!)

© 2004 Lara Dean
Circle the correct answer:

No one in our class will get sick this week.

certain likely possible impossible

Make a prediction about what the teacher will help her class with based on this pie chart: ________________________________

Why? ___

The temperature on this thermometer is closest to:

a) 10° Fahrenheit
b) 20° Fahrenheit
c) 30° Fahrenheit
d) 40° Fahrenheit
What pattern do you see? __________________________

Write a story problem using this number sentence: 20 - 8 = 12

Are these two polygons congruent (the same size and the same shape)?

yes no

Draw 2 lines of symmetry on this rectangle:

Find the numerical value being represented by the symbol that will make the statement true:

+ 5 = 12

(Hint... You can use fact families to help you!)
Name_________ December Concepts Review (Month 4) #5

Circle the correct answer:

Our whole class will get 100% on the next math text.

certain likely possible impossible

What We Want to Read

Genres

Tall Tales

Fairy Tales

Biographies

Number of Votes

Make a prediction about what genre the class will learn about next: _____________________________

Why?___

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **patterns** do you see? __

Write a story problem using this **number sentence**: 12 - 7 = 5

Are these two polygons **congruent** (the same size and the same shape)?

yes no

Draw 1 line of **symmetry** on this triangle:

Find the **numerical value** being represented by the **symbol** that will make the statement true:

\[10 - \triangle = 8 \]

(Hint...You can use fact families to help you!)
Circle the correct answer:

Our teacher will be at school every day next week.

certain likely possible impossible

Make a prediction about how the teacher will use this line graph to get students to turn in their homework: _________________________________

Why?___

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **patterns** do you see in the picture?

Write a story problem using this **number sentence**: $15 - 7 = 8$

Are these two polygons **congruent** (the same size and the same shape)?

Are these two polygons congruent? **yes** **no**

Draw 4 lines of **symmetry** on this square:

Draw 4 lines of symmetry on this square:

Find the **numerical value** being represented by the **symbol** that will make the statement true:

Find the numerical value being represented by the symbol that will make the statement true:

$\odot + 9 = 17$

(Hint...You can use fact families to help you!)
Circle the correct answer:

My teacher will be happy if I do my homework.

certain likely possible impossible

Favorite Sandwich

Peanut Butter Cheese

Malik Erin Jo Jose Kuger Mike
Jaxon Rosava Matt Shauna Zade
Jessica Matt Ann Steve April
Angel Juma Shauna Amy Carie

Make a **prediction** about what sack lunches the teacher will order for the fieldtrip based on this Venn Diagram: ______________

__

Why? __

The **temperature** on this **thermometer** is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit

© 2004 Lara Dean
What **patterns** do you see?

__________________________ ________________________________

__________________________ ________________________________

Write a story problem using this **number sentence**: 18 - 8 = 10

__________________________ ________________________________

__________________________ ________________________________

Are these two polygons **congruent** (the same size and the same shape)?

[] yes [] no

__________________________ ________________________________

__________________________ ________________________________

Draw 4 lines of **symmetry** on this square:

[]

__________________________ ________________________________

__________________________ ________________________________

Find the **numerical value** being represented by the **symbol** that will make the statement true:

7 + △ =14

(Hint...You can use fact families to help you!)
Name___________ December Concepts Review (Month 4) #8

9 9 9 9 9 9 9 9 9 9
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Circle the correct answer:

Our teacher can jump rope 50 times in a row.

certain likely possible impossible

Tardies Room 11

<table>
<thead>
<tr>
<th>Day</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Tardies</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Make a prediction about what the teacher will do about tardies based on this chart: ____________________________

Why?_______________________________________

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit

© 2004 Lara Dean
What **patterns** do you see?

Write a story problem using this **number sentence**: $25 - 15 = 10$

Are these two polygons **congruent** (the same size and the same shape)?

yes no

Draw a **lines of symmetry** on this arrow:

Find the **numerical value** being represented by the **symbol** that will make the statement true:

$$9 + \boxed{} = 18$$

(Hint...You can use fact families to help you!)

© 2004 Lara Dean
Circle the correct answer:

Clouds will block our view of the sun tomorrow.

certain likely possible impossible

Make a prediction about what the teacher will do for P.E. this week: __

Why?___

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit
What **pattern** do you see?

__

__

__

Write a story problem using this **number sentence**: 6 - 3 = 3

__

__

__

Are these two polygons **congruent** (the same size and the same shape)?

[] yes [] no

__

__

__

Draw 2 lines of **symmetry** on this rectangle:

__

__

__

Find the **numerical value** being represented by the **symbol** that will make the statement true:

\[\triangle + 9 = 15 \]

(Hint...You can use fact families to help you!)

© 2004 Lara Dean
Circle the correct answer:

A baby will be born in Utah this week.

certain likely possible impossible

Make a prediction about what Lia’s parents will know about her reading when they see this line graph:

Why? ____________________________

The temperature on this thermometer is closest to:

a) 70° Fahrenheit
b) 80° Fahrenheit
c) 90° Fahrenheit
d) 100° Fahrenheit
What **pattern** do you see?

__
__

Write a story problem using this **number sentence**: 10 - 6 = 4

__

Are these two polygons **congruent** (the same size and the same shape)?

yes no

Draw any lines of **symmetry** on this shape:

Find the **numerical value** being represented by the **symbol** that will make the statement true:

10 + △ = 20

(Hint...You can use fact families to help you!)
Circle the correct answer:

All of the grass at our school will turn pink tomorrow.

certain likely possible impossible

Room # Number of Books Read

<table>
<thead>
<tr>
<th>Room #</th>
<th>Number of Books Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>□□□□□□□□□□□□□□□□□□□□</td>
</tr>
<tr>
<td>12</td>
<td>□□□□□□□□□□□□□□□□□□□□</td>
</tr>
<tr>
<td>15</td>
<td>□□□□□□□□□□□□□□□□□□□□</td>
</tr>
</tbody>
</table>

□ = 10 books

Make a prediction about which class will win the reading contest based on this pictograph: ____________________________

Why? ___

The temperature on this thermometer is closest to:

a) 50° Fahrenheit
b) 60° Fahrenheit
c) 70° Fahrenheit
d) 80° Fahrenheit

© 2004 Lara Dean
What **pattern** do you see?

__

__

__

Write a story problem using this **number sentence**: 5 - 3 = 2

__

__

Are these two polygons **congruent** (the same size and the same shape)?

[] yes [] no

Draw 2 lines of **symmetry** on this rectangle:

[]

Find the **numerical value** being represented by the **symbol** that will make the statement true:

5 + △ = 8

(Hint...You can use fact families to help you!)
Circle the correct answer:

Our librarian has a nice sister.

certain likely possible impossible

Fieldtrip Ideas!

<table>
<thead>
<tr>
<th>Zoo</th>
<th>☺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liberty Park</td>
<td>☻</td>
</tr>
<tr>
<td>Children's Museum</td>
<td>☻ ☻ ☻</td>
</tr>
</tbody>
</table>

☹ = 5 votes

Make a prediction about where the teacher might take her class on the next field trip based on this pictograph: ________________

Why? __

The temperature on this thermometer is closest to:

a) 10° Fahrenheit
b) 20° Fahrenheit
c) 30° Fahrenheit
d) 40° Fahrenheit
What **patterns** do you see?

__

__

Write a story problem using this **number sentence**: 12 - 4 = 8

__

__

Are these two polygons **congruent** (the same size and the same shape)?

[] yes [] no

Draw 2 lines of **symmetry** on this hexagon:

[]

Find the **numerical value** being represented by the **symbol** that will make the statement true:

11 - [] = 8

(Hint...You can use fact families to help you!)
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

6 6 6 6 7 7 8 3 3 4
x6 x7 x8 x9 x7 x8 x8 x9 x3 x2

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 15 x 0 =_____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 15 x 1 =_____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will___________________.
Example: 2 x 5 is the same as ____x____.
 The answer to both of these is _____.

© 2004 Lara Dean
Label each of these angles as **acute**, **right**, or **obtuse**.

example:

- obtuse

1) Draw a **point** at 3, 4.
2) Draw a **line** from 2, 1 to 2, 4.
3) Draw a **line segment** between **endpoints** 4, 1 and 4, 4.
4) Color any vertical lines **red** (they are up and down **| |**).
5) Color any **horizontal** lines **blue** (side to side like the **horizon**).
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 12 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 12 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will___________________.
Example: 3 x 6 is the same as ____x_____
 The answer to both of these is ______.
Label each of these angles as **acute**, **right**, or **obtuse**.

example: ______ acute

1) **Draw a point** at 4, 3.
2) **Draw a line** from 1, 2 to 4, 2.
3) **Draw a line segment** between endpoints 1, 4 and 4, 4.
4) **Color any vertical lines red** (they are up and down \|\|).
5) **Color any horizontal lines blue** (side to side like the horizon).

© 2004 Lara Dean
This poem has times table tricks… 6x6=36
Multiplication is fun to do… 6x7=42
Here’s a fact that’s really great… 6x8=48
They are the same every time… 7x7=49
We do our math just for kicks… 7x8=56
This is it, there are no more… 8x8=64

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>3</th>
<th>7</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x6</td>
<td>x7</td>
<td>x8</td>
<td>x9</td>
<td>x7</td>
<td>x8</td>
<td>x8</td>
<td>x8</td>
<td>x3</td>
<td>x6</td>
</tr>
</tbody>
</table>

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 8 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 8 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will___________________.
Example: 3 x 1 is the same as _____x_____.

The answer to both of these is ______.

© 2004 Lara Dean
<table>
<thead>
<tr>
<th>cut this out</th>
<th>Original Shape</th>
<th>Translation (slide it & trace)</th>
<th>Reflection (flip it & trace)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Label each of these angles as **acute**, **right**, or **obtuse**.

example: obtuse

1) Draw a **point** at 8, 4.
2) Draw a **line** from 7, 3 to 7, 6.
3) Draw a **line segment** between **endpoints** 9, 3 and 9, 6.
4) Color any vertical lines red (they are up and down \(\uparrow \downarrow \)).
5) Color any **horizontal** lines blue (side to side like the **horizon**).

© 2004 Lara Dean
Name___________ January Concepts Review (Month 5) #4

This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 5 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always____________________.
Example: 5 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will__________________.
Example: 3 x 5 is the same as ____x____.
 The answer to both of these is ______.
Label each of these angles as acute, right, or obtuse

example: acute

1) Draw a point at 2, 8.
2) Draw a line from 3, 7 to 6, 7.
3) Draw a line segment between endpoints 3, 9 and 6, 9.
4) Color any vertical lines red (they are up and down \| \|).
5) Color any horizontal lines blue (side to side like the horizon).

Remember—Over & Up!
This poem has times table tricks... 6×6=36
Multiplication is fun to do... 6×7=42
Here's a fact that's really great... 6×8=48
They are the same every time... 7×7=49
We do our math just for kicks... 7×8=56
This is it, there are no more... 8×8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always ____________________.
Example: 20 × 0 = ______

Identity Property of Multiplication:
Any number multiplied by one always____________________.
Example: 20 × 1 = ______

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will__________________.
Example: 4 × 6 is the same as ____×____.
 The answer to both of these is ______.
Label each of these angles as **acute**, **right**, or **obtuse**.

example: right

1) Draw a **point** at 5, 8.
2) Draw a **line** from 5, 3 to 5, 7.
3) Draw a **line segment** between **endpoints** 3, 5 and 7, 5.
4) Color any vertical lines red (they are up and down \(\|\)).
5) Color any **horizontal** lines blue (side to side like the horizon).

© 2004 Lara Dean
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>3</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x6</td>
<td>x7</td>
<td>x8</td>
<td>x9</td>
<td>x7</td>
<td>x8</td>
<td>x8</td>
<td>x5</td>
<td>x3</td>
<td>x5</td>
</tr>
</tbody>
</table>

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always ______________________.
Example: 7 x 0 = ______

Identity Property of Multiplication:
Any number multiplied by one always____________________.
Example: 7 x 1 = ______

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will____________________.
Example: 7 x 2 is the same as _____x_____.
 The answer to both of these is ______.
Label each of these angles as acute, right, or obtuse.

example: acute

1) Draw a point at 9, 8.
2) Draw a line from 1, 1 to 3, 3.
3) Draw a line segment between endpoints 5, 5 and 7, 7.
4) Color any vertical lines red (they are up and down | |).
5) Color any horizontal lines blue (side to side like the horizon).

Remember—Over & Up!
This poem has times table tricks… 6x6=36
Multiplication is fun to do… 6x7=42
Here's a fact that's really great… 6x8=48
They are the same every time… 7x7=49
We do our math just for kicks… 7x8=56
This is it, there are no more… 8x8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 9 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always____________________.
Example: 9 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication
problem and the product (the answer) will_____________________

Example: 3 x 9 is the same as ____x____.
 The answer to both of these is ______.
Label each of these angles as **acute**, **right**, or **obtuse**.

example: obtuse

1) Draw a **point** at 3, 5.
2) Draw a **line** from 4, 5 to 4, 9.
3) Draw a **line segment** between endpoints 10, 3 and 10, 7.
4) Color any vertical lines red (they are up and down ||).
5) Color any **horizontal** lines blue (side to side like the horizon).

Remember—Over & Up!
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

6 6 6 7 7 8 8 8 8
x6 x7 x8 x9 x7 x8 x8 x9 x3 x2

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _____________________.
Example: 8 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always_______________________.
Example: 8 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will_______________________.
Example: 8 x 6 is the same as ____x_____.
 The answer to both of these is _______.
Label each of these angles as **acute**, **right**, or **obtuse**.

example: acute

1) Draw a **point** at 5, 9.
2) Draw a **line** from 5, 6 to 3, 9.
3) Draw a **line segment** between **endpoints** 5, 6 and 7, 9.
4) Color any vertical lines red (they are up and down __).
5) Color any **horizontal** lines blue (side to side like the **horizon**).
This poem has times table tricks...
Multiplication is fun to do...
Here's a fact that's really great...
They are the same every time...
We do our math just for kicks...
This is it, there are no more...

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>9</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>x6</td>
<td>x7</td>
<td>x8</td>
<td>x9</td>
<td>x7</td>
<td>x8</td>
<td>x8</td>
<td>x9</td>
<td>x3</td>
<td>x2</td>
</tr>
</tbody>
</table>

Fill in the long blank lines with **zero** or **stays the same**.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 9 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 9 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the **factors** in a multiplication problem and the **product** (the answer) will___________________.
Example: 9 x 6 is the same as ____x____.
The answer to both of these is ______.
Label each of these angles as **acute**, **right**, or **obtuse**.

example: \[
\text{acute} \quad \begin{array}{c}
\text{\rotatebox{270}{\hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm}}} \\
\end{array}
\]

1) Draw a **point** at 1, 2.
2) Draw a **line** from 3, 4 to 5, 6.
3) Draw a **line segment** between **endpoints** 7, 8 and 9, 10.
4) Color any vertical lines red (they are up and down \(\uparrow \downarrow \)).
5) Color any **horizontal** lines blue (side to side like the **horizon**).
This poem has times table tricks... 6×6=36
Multiplication is fun to do... 6×7=42
Here's a fact that's really great... 6×8=48
They are the same every time... 7×7=49
We do our math just for kicks... 7×8=56
This is it, there are no more... 8×8=64

<table>
<thead>
<tr>
<th>6</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x6</td>
<td>x7</td>
<td>x8</td>
<td>x9</td>
<td>x7</td>
<td>x8</td>
<td>x8</td>
<td>x9</td>
<td>x3</td>
<td>x2</td>
</tr>
</tbody>
</table>

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 1 × 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 1 × 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will____________________.

Example: 1 × 6 is the same as ____×____.
The answer to both of these is ______.
Label each of these angles as acute, right, or obtuse.

example: acute

1) Draw a point at 4, 10.
2) Draw a line from 3, 4 to 5, 6.
3) Draw a line segment between endpoints 3, 7 and 5, 9.
4) Color any vertical lines red (they are up and down l l).
5) Color any horizontal lines blue (side to side like the horizon).
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 32 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always___________________.
Example: 32 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will___________________.
Example: 3 x 2 is the same as ____x____.
The answer to both of these is _____.

© 2004 Lara Dean
Label each of these angles as acute, right, or obtuse.

example: obtuse

1) Draw a point at 9, 10.
2) Draw a line from 3, 7 to 6, 4.
3) Draw a line segment between endpoints 3, 4 and 6, 7.
4) Color any vertical lines red (they are up and down \|\).
5) Color any horizontal lines blue (side to side like the horizon).

Remember - Over & Up!
This poem has times table tricks... 6x6=36
Multiplication is fun to do... 6x7=42
Here's a fact that's really great... 6x8=48
They are the same every time... 7x7=49
We do our math just for kicks... 7x8=56
This is it, there are no more... 8x8=64

Fill in the long blank lines with zero or stays the same.

Zero Property of Multiplication:
Any number multiplied by zero is always _________________.
Example: 2 x 0 = _____

Identity Property of Multiplication:
Any number multiplied by one always____________________.
Example: 2 x 1 = _____

Commutative Property of Multiplication:
You can change the order of the factors in a multiplication problem and the product (the answer) will__________________.
Example: 2 x 9 is the same as ____x____.
 The answer to both of these is ______.
Label each of these angles as **acute**, **right**, or **obtuse**.

Example: acute

1) Draw a **point** at 5, 5.
2) Draw a **line** from 1,9 to 9, 1.
3) Draw a **line segment** between **endpoints** 1, 1 and 9, 9.
4) Color any vertical lines red (they are up and down \(\| \)).
5) Color any **horizontal** lines blue (side to side like the **horizon**).
Draw an array showing the multiplication sentence $7 \times 6 = 42$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

We had four 6-packs of soda for our class party. How many cans of soda were there all together?

a) $6 - 4 = 2$
b) $4 + 6 = 10$
c) $6 + 4 = 10$
d) $6 \times 4 = 24$

Solve this equation by making both sides equal.

$7 + 0 = 8 - \bigcirc$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[10 - 5 \bigcirc 5 + 1 \]

Write directions to tell how to get from our classroom to the gym.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 3 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There are 4 baskets. Each basket has 10 markers. How many markers are there in all?

a) $10 + 4 = 14$

b) $10 - 4 = 6$

c) $10 - 6 = 4$

d) $10 \times 4 = 40$

Solve this equation by making both sides equal.

$$12 + 7 = 3 + \boxed{10}$$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[7 + 6 \quad \text{or} \quad 12 - 2 \]

Write directions to tell how to get from our classroom to the school library.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 2 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There will be 60 problems on the math test and 60 problems on the language test. How many problems will that be in all?

a) $60 \times 60 = 3,600$
b) $60 - 60 = 0$
c) $60 + 60 = 120$
d) $120 - 60 = 60$

Solve this equation by making both sides equal.

$\bigcirc + 3 = 14 - 6$
Compare these two expressions using < > or =.
(Hint—find the total for each side first!)

\[6 + 6 \quad \bigcirc \quad 3 + 4 \]

Write directions to tell how to get from our classroom to the bathrooms.

Circle the correct answer. This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 4 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

```
  10 10 10 10 10 10 10 10 10 10
  0 1 2 3 4 5 6 7 8 9 10
```

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There were 20 markers for the white board. Four of them dried out. How many are left?

a) $20 \times 4 = 80$
b) $20 - 4 = 16$
c) $20 + 4 = 24$
d) $4 + 20 = 24$

Solve this equation by making both sides equal.

$10 + 10 = 5 + \bigcirc$
Compare these two expressions using < > or =. (Hint--find the total for each side first!)

$$7 + 7 \quad \bigcirc \quad 5 - 3$$

Write directions to tell how to get from our classroom to the playground.

Circle the correct answer. This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 5 equal sets (groups).
Draw an **array** showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the **algorithm** that shows how to solve the problem:

The 3rd graders scored 13 points in soccer. The 4th graders scored 17 points. How many **total** points were there?

a) $30 - 17 = 13$

b) $13 \times 17 = 221$

c) $13 + 17 = 30$

d) $30 - 13 = 17$

Solve this **equation** by making both sides equal.

$\bigcirc + 7 = 3 + 9$

© 2004 Lara Dean
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[7 - 6 \quad \boxed{\text{or}} \quad 6 - 2 \]

Write directions to tell how to get from our classroom to the lunchroom.

Circle the correct answer.
This shape is divided into:

- halves
- thirds
- fourths
- fifths
- sixths
- eighths

What fraction is shaded?

Divide these into 6 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There are 6 computers in room eleven. Each one has 2 speakers. How many speakers are there in all?

a) $6 \times 2 = 12$

b) $6 - 2 = 4$

c) $6 + 2 = 8$

d) $4 + 2 = 6$

Solve this equation by making both sides equal.

$\bigcirc + 7 = 3 + 5$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[2 + 4 \quad \bigcirc \quad 3 + 8 \]

Write directions to tell how to get from our classroom to the stage.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 2 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There were 34 animal cookies in a bag. The kids ate 20 of them. How many are there now?

a) $34 \times 20 = 680$

b) $34 + 20 = 54$

c) $34 - 20 = 14$

d) $20 + 14 = 34$

Solve this equation by making both sides equal.

$$2 + \bigcirc = 3 + 4$$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[9 - 1 \quad \bigcirc \quad 4 + 4\]

Write directions to tell how to get from our classroom to the main entrance of the school.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 3 equal sets (groups).
Draw an **array** showing the multiplication sentence $5 \times 6 = 30$.

![Array diagram](image)

Draw a picture for the following problem. Then choose the **algorithm** that shows how to solve the problem:

Teri has 7 books at home. Jerry has 5. **How many more** books does Teri have than Jerry?

a) $7 + 5 = 12$

b) $12 - 7 = 5$

c) $7 - 5 = 2$

d) $12 - 7 = 5$

Solve this **equation** by making both sides equal.

$\bigcirc - 4 = 2 + 5$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[4 + 4 \quad \bigcirc \quad 10 - 5 \]

Write directions to tell how to get from our classroom to the lunchroom.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 4 equal sets (groups).
10 10 10 10 10 10 10 10 10 10
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

Anna had $19. She spent $14 for a basketball. Now how much money does she have left?

a) $19 - $14 = $5
b) $19 + $14 = $33
c) $33 - $19 = $14
d) $33 - $14 = $19

Solve this equation by making both sides equal.

$12 - 10 = \Box + 2$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[7 + 5 \quad \bigcirc \quad 15 - 7 \]

Write directions to tell how to get from our classroom to the principal's office.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 5 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

The first grade teacher bought 3 pizzas. Each pizza had 8 slices. How many pieces were there in all?

a) $8 \times 3 = 24$

b) $8 - 3 = 5$

c) $8 + 3 = 11$

d) $3 + 8 = 11$

Solve this equation by making both sides equal.

$$2 + 5 = 3 + \square$$

© 2004 Lara Dean
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[5 + 4 \quad \bigcirc \quad 4 + 5\]

Write directions to tell how to get from our classroom to the secretary's desk.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 2 equal sets (groups).
Draw an array showing the multiplication sentence $5 \times 6 = 30$.

Draw a picture for the following problem. Then choose the algorithm that shows how to solve the problem:

There were 28 math books in our classroom. Another class had to borrow 3. How many are left?

a) $28 + 3 = 31$
b) $28 \times 3 = 84$
c) $28 - 3 = 25$
d) $25 + 3 = 28$

Solve this equation by making both sides equal.

$\bigcirc + 3 = 18 - 4$
Compare these two expressions using < > or =.
(Hint--find the total for each side first!)

\[9 - 7 \quad \bigcirc \quad 3 + 3 \]

Write directions to tell how to get from our classroom to the closet parking lot.

Circle the correct answer.
This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 3 equal sets (groups).
Draw an **array** showing the multiplication sentence $5 \times 6 = 30$.

![Array](image)

Draw a picture for the following problem. Then choose the **algorithm** that shows how to solve the problem:

Oscar had 8 pieces of gum. He chewed 3 of them. How many are left?

a) $8 \times 3 = 24$

b) $8 - 3 = 5$

c) $8 + 3 = 11$

d) $11 - 5 = 6$

Solve this **equation** by making both sides equal.

$$3 + \Box = 2 + 3$$
Compare these two expressions using < > or =. (Hint--find the total for each side first!)

12 - 7 \(\bigcirc \) 3 + 5

Challenge! Write directions to tell how to get from our classroom to your house.

Circle the correct answer. This shape is divided into:

halves thirds fourths fifths sixths eighths

What fraction is shaded?

Divide these into 2 equal sets (groups).
Name________________ March Concepts Review (Month 7) #1

Divide this into 3 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

______ ÷ ______ = ______

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[
\begin{align*}
3 + 4 &= 7 \\
4 + 3 &= 7 \\
7 - 4 &= 3 \\
7 - 3 &= 4
\end{align*}
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using × and ÷.

2 10 5

_____ × _____ = _____

_____ × _____ = _____

_____ ÷ _____ = _____

_____ ÷ _____ = _____

What time is shown on this clock?

_________ or

a) twelve o’clock
b) quarter past twelve
c) half past twelve
d) quarter to one

© 2004 Lara Dean
Write a fraction with a **numerator** of 2 and a **denominator** of 4.

The numerator is the number on top...

The denominator is downstairs!

Compare these two fractions using $\, < \, > \, \text{or} \, = \,$.

\[
\frac{4}{5} \quad \quad \quad \quad \quad \quad \frac{5}{5}
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) How many Sundays are in this month? __________________
2) Find the date January 15th. What **day** is that?___________
3) What is the **date** of the 1st Monday?____________________

© 2004 Lara Dean
Divide this into 2 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[3 + 4 = 7 \quad 7 - 4 = 3 \]
\[4 + 3 = 7 \quad 7 - 3 = 4 \]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times \) and \(\div \).

\[4 \quad 20 \quad 5 \]

_____ \(\times \) _____ = _____

_____ \(\div \) _____ = _____

_____ \(\times \) _____ = _____

_____ \(\div \) _____ = _____

What time is shown on this clock?

__________ or

a) two o’clock
b) quarter past two
c) half past two
d) quarter to three
Write a fraction with a **numerator** of 3 and a **denominator** of 4.

The numerator is the number on top...

The denominator is downstairs!

Compare these two fractions using < > or =.

\[
\begin{array}{c|c|c}
3/6 & \text{ } & 2/6 \\
\hline
\end{array}
\]

1) How many Mondays are in this month?___________________

2) Find the date May 15th. What **day** is that?___________

3) What is the **date** of the 2nd Tuesday?__________________

© 2004 Lara Dean
Divide this into 4 equal parts:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Represent this model with a division sentence:

______ ÷ ______ = ______

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[3 + 4 = 7 \quad 7 - 4 = 3 \]
\[4 + 3 = 7 \quad 7 - 3 = 4 \]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using x and ÷.

\[2 \quad 6 \quad 12 \]

______ x ______ = ______

______ ÷ ______ = ______

______ x ______ = ______

______ ÷ ______ = ______

What time is shown on this clock?

__________ or

a) six o'clock
b) quarter past six
c) half past six
d) quarter to seven
Write a fraction with a **numerator** of 1 and a **denominator** of 5.

Compare these two fractions using < > or =

\[
\begin{array}{c}
\frac{2}{4} \quad \text{or} \quad \frac{2}{4}
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) **How many Tuesdays are in this month?**

2) **Find the date April 17th. What day is that?**

3) **What is the date of the 3rd Wednesday?**
Divide this into 6 equal parts: (this one is a little harder!)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are **inverse operations** (opposites of each other). They make up fact families. For example:

\[
3 + 4 = 7 \quad 7 - 4 = 3 \\
4 + 3 = 7 \quad 7 - 3 = 4
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using x and ÷.

40 8 5

_____ x _____ = _____
_____ ÷ _____ = _____
_____ x _____ = _____
_____ ÷ _____ = _____

What time is shown on this clock?

___________ or

a) one o’clock
b) quarter past one
c) half past one
d) quarter to two
Write a fraction with a **numerator** of 3 and a **denominator** of 5.

The **numerator** is the number on top...

The **denominator** is downstairs!

Compare these two fractions using **<**, **>**, or **=**.

$$\frac{5}{6} \quad \bigcirc \quad \frac{3}{6}$$

1) How many Wednesdays are in this month?________________

2) Find the date November 22. What **day** is that?___________

3) What is the **date** of the 4th Thursday?_________________

© 2004 Lara Dean
Divide this into 12 equal parts:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Represent this model with a division sentence:

We know that addition and subtraction are **inverse operations** (opposites of each other). They make up fact families. For example:

\[
3 + 4 = 7 \\
4 + 3 = 7 \\
7 - 4 = 3 \\
7 - 3 = 4
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times \) and \(\div \).

\[
3 \quad 12 \quad 4
\]

______ \(\times \) ______ = ______

______ \(\div \) ______ = ______

______ \(\times \) ______ = ______

______ \(\div \) ______ = ______

What time is shown on this clock?

__________ or

a) eleven o’clock
b) quarter past eleven
c) half past eleven
d) quarter to twelve
Write a fraction with a **numerator** of 2 and a **denominator** of 8.

The **numerator** is the number on top...

The **denominator** is downstairs!

1) **How many Thursdays are in this month?**

2) **Find the date June 3rd. What day is that?**

3) **What is the date of the 1st Friday?**

```
June

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Divide this into 3 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

3 + 4 = 7 7 - 4 = 3
4 + 3 = 7 7 - 3 = 4

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using x and ÷.

3 7 21

_____ x _____ = _____ _____ ÷ _____ = _____

_____ x _____ = _____ _____ ÷ _____ = _____

What time is shown on this clock?

__________ or
a) seven o’clock
b) quarter past seven
c) half past seven
d) quarter to eight
Write a fraction with a **numerator** of 2 and a **denominator** of 4.

The **numerator** is the number on top...

The **denominator** is downstairs!

Compare these two fractions using < > or =.

3 1

3 3

1) How many Fridays are in this month?___________________

2) Find the date April 20th. What **day** is that?___________

3) What is the **date** of the 2nd Saturday?_________________

© 2004 Lara Dean
Divide this into 2 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

______ ÷ ______ = ______

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

3 + 4 = 7 7 - 4 = 3
4 + 3 = 7 7 - 3 = 4

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using x and ÷.

6 30 5

______ x ______ = ______ ______ ÷ ______ = ______

______ x ______ = ______ ______ ÷ ______ = ______

What time is shown on this clock?

_________ or

a) five o’clock
b) quarter past five
c) half past five
d) quarter to five

© 2004 Lara Dean
Write a fraction with a **numerator** of 4 and a **denominator** of 5.

The numerator is the number on top...

The denominator is downstairs!

Compare these two fractions using < > or =.

\[
\begin{array}{c}
\frac{3}{5} \\
\frac{4}{5}
\end{array}
\]

1) How many Saturdays are in this month?_________________

2) Find the date January 26th. What **day** is that?____________

3) What is the **date** of the 3rd Sunday?_______________________
Divide this into 3 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Represent this model with a division sentence:

\[_____ ÷ _____ = _____ \]

We know that addition and subtraction are **inverse operations** (opposites of each other). They make up fact families. For example:

\[
\begin{align*}
3 + 4 &= 7 & 7 - 4 &= 3 \\
4 + 3 &= 7 & 7 - 3 &= 4
\end{align*}
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times \) and \(÷ \).

\[
\begin{align*}
6 & \quad 48 & \quad 8 \\
_____ \times _____ &= _____ & _____ ÷ _____ &= _____ \\
_____ \times _____ &= _____ & _____ ÷ _____ &= _____
\end{align*}
\]

What time is shown on this clock?

_________ or

a) eleven o’clock
b) quarter past eleven
c) half past eleven
d) quarter to twelve
Write a fraction with a **numerator** of 1 and a **denominator** of 2.

The **numerator** is the number on top...

The **denominator** is downstairs!

Compare these two fractions using \(<\), \(>\), or \(\text{=}\).

\[
\begin{array}{c}
\frac{2}{8} \\
\frac{4}{8}
\end{array}
\]

1) How many Sundays are in this month?___________________

2) Find the date August 25th. What **day** is that?___________

3) What is the **date** of the 4th Monday?__________________

© 2004 Lara Dean
Divide this into 5 equal parts:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[
\begin{align*}
3 + 4 &= 7 \\
4 + 3 &= 7 \\
7 - 4 &= 3 \\
7 - 3 &= 4
\end{align*}
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times\) and \(\div\).

\[
\begin{align*}
7 & 56 & 8 \\
\hline
\end{align*}
\]

_____ \(\times\) _____ = _____ \\
_____ \(\div\) _____ = _____

_____ \(\times\) _____ = _____ \\
_____ \(\div\) _____ = _____

What time is shown on this clock?

_________ or

a) ten o'clock

b) quarter past ten

c) half past ten

d) quarter to eleven
Write a fraction with a **numerator** of 1 and a **denominator** of 8.

The **numerator** is the number on top...

The **denominator** is downstairs!

Compare these two fractions using < > or =.

\[
\begin{array}{ccc}
\frac{2}{4} & \bigcirc & \frac{3}{4} \\
\end{array}
\]

July

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) How many Mondays are in this month?___________________

2) Find the date July 5th. What **day** is that?____________

3) What is the **date** of the 1st Tuesday?__________________
Divide this into 2 equal parts:

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[
\begin{align*}
3 + 4 &= 7 \\
4 + 3 &= 7 \\
7 - 4 &= 3 \\
7 - 3 &= 4
\end{align*}
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using x and ÷.

\[
\begin{align*}
5 & \quad 45 & \quad 9 \\
\end{align*}
\]

_____ x _____ = _____ \\
_____ ÷ _____ = _____

_____ x _____ = _____ \\
_____ ÷ _____ = _____

What time is shown on this clock?

__________ or

a) eight o’clock
b) quarter past eight
c) half past eight
d) quarter to nine
Write a fraction with a **numerator** of 3 and a **denominator** of 8.

![Fraction Diagram]

Compare these two fractions using ` < ` > or ` = `.

\[
\frac{4}{6} \quad \bigcirc \quad \frac{2}{6}
\]

December Calendar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) How many Tuesdays are in this month? ______________________

2) Find the date December 10th. What **day** is that? __________

3) What is the **date** of the 2nd Wednesday? _________________
Divide this into 5 equal parts:

| | | | | |

Represent this model with a division sentence:

______ ÷ ______ = ______

We know that addition and subtraction are **inverse operations** (opposites of each other). They make up fact families. For example:

\[
\begin{align*}
3 + 4 &= 7 & 7 - 4 &= 3 \\
4 + 3 &= 7 & 7 - 3 &= 4
\end{align*}
\]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times \) and \(\div \).

\[
\begin{array}{ccc}
70 & 10 & 7
\end{array}
\]

______ \(\times \) ______ = ______

______ \(\div \) ______ = ______

______ \(\times \) ______ = ______

______ \(\div \) ______ = ______

What time is shown on this clock?

___________ or

- a) four o’clock
- b) quarter past four
- c) half past four
- d) quarter to five
Write a fraction with a **numerator** of 6 and a **denominator** of 8.

The **numerator** is the number on top...

The **denominator** is downstairs!

Compare these two fractions using **<** or **>** or **=**.

\[\frac{2}{3} \quad \bigcirc \quad \frac{1}{3} \]

February

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) How many Wednesdays are in this month?______________

2) Find the date February 4th. What **day** is that?___________

3) What is the **date** of the 3rd Thursday?______________
Divide this into 4 equal parts:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represent this model with a division sentence:

_____ ÷ _____ = _____

We know that addition and subtraction are inverse operations (opposites of each other). They make up fact families. For example:

\[\begin{align*}
3 + 4 &= 7 \\
4 + 3 &= 7 \\
7 - 4 &= 3 \\
7 - 3 &= 4
\end{align*} \]

Multiplication and division are also inverse operations. Use these three digits to make 4 facts that are related using \(\times \) and \(\div \).

\[\begin{align*}
3 & \quad 24 & \quad 8 \\
\end{align*} \]

_____ \(\times \) _____ = _____

_____ \(\div \) _____ = _____

_____ \(\times \) _____ = _____

_____ \(\div \) _____ = _____

What time is shown on this clock?

__________ or

a) ten o’clock
b) quarter past ten
c) half past ten
d) quarter to eleven
Write a fraction with a **numerator** of 2 and a **denominator** of 6.

![Fraction drawing]

Compare these two fractions using < > or =.

![Fraction comparison]

1) How many Thursdays are in this month? _________________

2) Find the date September 7th. What **day** is that? __________

3) What is the **date** of the 1st Friday? ____________________

© 2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!__________

4 feet

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!__________

6 feet

How much is this worth? Write your answer in **decimal notation**.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest $\frac{1}{2}$ inch. a) 3 inches
b) $3 \frac{1}{2}$ inches
c) 4 inches

© 2004 Lara Dean
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)_______________</td>
<td>a)_____________ a)_____________</td>
</tr>
<tr>
<td>60 minutes = ___ hour</td>
<td></td>
<td>b)_______________</td>
<td>b)_____________ b)_____________</td>
</tr>
<tr>
<td>24 _________ = 1 day</td>
<td></td>
<td>4 _______ = 1 quart</td>
<td>c)_______________</td>
</tr>
<tr>
<td>7 days = 1__________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_______ days = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 ________ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = 1 _______</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!__________

2 feet

4 feet

Area ... oh area ...
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!__________

How much is this worth? Write your answer in decimal notation.

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest \(\frac{1}{2} \) inch. a) 3 \(\frac{1}{2} \) inches
b) 4 inches
c) 4 \(\frac{1}{2} \) inches

© 2004 Lara Dean
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won’t use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = 1 ______</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)___________________</td>
<td>a)_______________ a)_______________</td>
</tr>
<tr>
<td>60 minutes = ____hour</td>
<td></td>
<td>b)___________________</td>
<td>b)_______________ b)_______________</td>
</tr>
<tr>
<td>24 hours = 1 ______</td>
<td></td>
<td>____cups = 1 quart</td>
<td>c)_______________</td>
</tr>
<tr>
<td>______ days = 1week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 days = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_____ weeks = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 _______ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are __________ inches in one foot.
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got! 1 foot

3 feet

Area ... oh area ...
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm
Measure this line to the nearest inch. _____ inches
Measure this line to the nearest \(\frac{1}{2} \) inch.
 a) 2 inches
 b) 2 \(\frac{1}{2} \) inches
 c) 3 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 _____ = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)___________</td>
<td>a)___________</td>
</tr>
<tr>
<td>60 __________ = 1 hour</td>
<td></td>
<td>b)___________</td>
<td>b)___________</td>
</tr>
<tr>
<td>24 ________ = 1 day</td>
<td></td>
<td>4 cups = ____ quart</td>
<td>c)___________</td>
</tr>
<tr>
<td>7 __________ = 1 week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 ________ = 1 year</td>
<td></td>
<td></td>
<td>There are 100 centimeters in 1</td>
</tr>
<tr>
<td>52 _________ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 _________ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got! __________ 3 cm

Area ... oh area ...
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide! __________

How much is this worth? Write your answer in decimal notation.

How much is this worth? Write your answer in decimal notation.

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest 1/2 inch. a) 4 1/2 inches
 b) 5 inches
 c) 5 1/2 inches

© 2004 Lara Dean
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words.
You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>________ seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)______________</td>
<td>a)______________</td>
</tr>
<tr>
<td>________ minutes = 1 hour</td>
<td></td>
<td>b)______________</td>
<td>b)______________</td>
</tr>
<tr>
<td>________ hours = 1 day</td>
<td></td>
<td>4 ______ = 1 quart</td>
<td>c)______________</td>
</tr>
<tr>
<td>________ days = 1 week</td>
<td></td>
<td></td>
<td>There are 100 ______________________ in 1 meter.</td>
</tr>
<tr>
<td>________ days = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>________ weeks = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>________ months = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!__________ 4 feet

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest $\frac{1}{2}$ inch.
a) 2 $\frac{1}{2}$ inches
b) 3 inches
c) 3 $\frac{1}{2}$ inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words.
You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = __ minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a) ____________</td>
<td>a) ____________ a) ____________</td>
</tr>
<tr>
<td>60 minutes = ___ hour</td>
<td>b) ____________</td>
<td>4 ______ = 1 quart</td>
<td>b) ____________ b) ____________</td>
</tr>
<tr>
<td>24 hours = ______ day</td>
<td>c) ____________</td>
<td></td>
<td>c) ____________</td>
</tr>
<tr>
<td>7 days = ______ week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 days = ___ year</td>
<td></td>
<td></td>
<td>There are 12 _____________ in 1 foot.</td>
</tr>
<tr>
<td>52 weeks = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 2 3 4 7 12 24 52 60 100 365 centimeter(s) cup(s) day(s) foot/feet hour(s) inch(es) meter(s) minute(s) month(s) pound(s) second(s) quart(s) week(s) yard(s) year(s)
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!___________ 3 yards

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!___________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm
Measure this line to the nearest inch. _____ inches
Measure this line to the nearest $\frac{1}{2}$ inch. a) 4 $\frac{1}{2}$ inches
 b) 5 inches
 c) 5 $\frac{1}{2}$ inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = 1 _____</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)___________</td>
<td>a)___________</td>
</tr>
<tr>
<td>60 minutes = 1 _____</td>
<td></td>
<td>b)___________</td>
<td>b)___________</td>
</tr>
<tr>
<td>24 hours = 1 _____</td>
<td></td>
<td>_____ cups = 1 quart</td>
<td></td>
</tr>
<tr>
<td>7 days = 1 ______</td>
<td></td>
<td></td>
<td>c)___________</td>
</tr>
<tr>
<td>365 days = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 weeks = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Customary</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)___________</td>
<td>a)___________</td>
</tr>
<tr>
<td>b)___________</td>
<td>b)___________</td>
</tr>
<tr>
<td>c)___________</td>
<td></td>
</tr>
</tbody>
</table>

There are 3 _____________ in one yard.

©2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!___________ 5 inches

Area ... oh area ...
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!___________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm
Measure this line to the nearest inch. _____ inches
Measure this line to the nearest 1/2 inch. a) 5 1/2 inches
 b) 6 inches
 c) 6 1/2 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)_________________</td>
<td>a)_______________</td>
</tr>
<tr>
<td>_____ minutes = 1 hour</td>
<td></td>
<td>b)_________________</td>
<td>b)_______________</td>
</tr>
<tr>
<td>24 hours = 1 _______</td>
<td></td>
<td>_____ cups = 1 quart</td>
<td>c)_______________</td>
</tr>
<tr>
<td>7 __________ = 1 week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_____ days = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 weeks = 1 _______</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metric

- a)_________________

Customary

- a)_________________

- b)_________________

There are 12 __________ in 1 foot.
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!__________ 3 feet

Area … oh area … 9 feet
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm
Measure this line to the nearest inch. _____ inches
Measure this line to the nearest $\frac{1}{2}$ inch. a) 1 inches
 b) $1\frac{1}{2}$ inches
 c) 2 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 seconds = _ minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)________________</td>
<td>a)________________</td>
</tr>
<tr>
<td>60 _______ = 1 hour</td>
<td></td>
<td>b)________________</td>
<td>b)________________</td>
</tr>
<tr>
<td>_______hours = 1 day</td>
<td></td>
<td>4 ______ = 1 quart</td>
<td></td>
</tr>
<tr>
<td>7 days = 1_________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 days = ____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 _______ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_______months = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Customary</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)__________</td>
<td>a)__________</td>
</tr>
<tr>
<td>b)__________</td>
<td>b)__________</td>
</tr>
<tr>
<td>c)__________</td>
<td></td>
</tr>
</tbody>
</table>

There are 100 _______ in 1 meter.
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!__________ 2 feet

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest $\frac{1}{2}$ inch.
a) $2\frac{1}{2}$ inches
b) 3 inches
c) $3\frac{1}{2}$ inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>___seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)__________</td>
<td>Metric</td>
</tr>
<tr>
<td>____ minutes = 1 hour</td>
<td>b)__________</td>
<td>b)__________</td>
<td>Customary</td>
</tr>
<tr>
<td>24 _________ = 1 day</td>
<td>4 cups = ______ quart</td>
<td>c)__________</td>
<td></td>
</tr>
<tr>
<td>7 __________ = 1 week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 days = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 weeks = _____ year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 2 3 4 7 12 24 52 60 100 365</th>
<th>centimeter(s)</th>
<th>cup(s)</th>
<th>day(s)</th>
<th>foot/feet</th>
<th>hour(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inch(es)</td>
<td>meter(s)</td>
<td>minute(s)</td>
<td>month(s)</td>
<td>pound(s)</td>
<td>second(s)</td>
</tr>
</tbody>
</table>
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!__________ 1 cm

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!__________

How much is this worth? Write your answer in decimal notation.

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest 1/2 inch. a) 6 inches
 b) 6 1/2 inches
 c) 7 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 __________ = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)_____________</td>
<td>a)_____________</td>
</tr>
<tr>
<td>60 minutes = 1 ______</td>
<td></td>
<td>b)_____________</td>
<td>b)_____________</td>
</tr>
<tr>
<td>24 __________ = 1 day</td>
<td></td>
<td>4 cups = 1_______</td>
<td>c)_____________</td>
</tr>
<tr>
<td>7 days = 1__________</td>
<td></td>
<td></td>
<td>There are 3 _____________ in 1 yard.</td>
</tr>
<tr>
<td>365 _______ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 weeks = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 __________= 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2004 Lara Dean
Perimeter, perimeter
you get around a lot.
I’ve got to add up all your sides
To see just how much length you’ve got!__________

Area ... oh area ... 4 yards
I know that you’re inside!
I will multiply two touching sides
To see how much you’re trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm
Measure this line to the nearest inch. _____ inches
Measure this line to the nearest $\frac{1}{2}$ inch. a) 1 inches
b) $1 \frac{1}{2}$ inches
c) 2 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)_________</td>
<td>a)_________ a)_________</td>
</tr>
<tr>
<td>60 _________ = 1 hour</td>
<td>b)_________</td>
<td>_____cups = 1 quart</td>
<td>b)_________ b)_________</td>
</tr>
<tr>
<td>24 hours = _____ day</td>
<td></td>
<td></td>
<td>c)_________</td>
</tr>
<tr>
<td>7 days = 1_________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>_______ days = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 ________ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = ___ year</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Metric</th>
<th>Customary</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are 100 centimeters in _____ meter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perimeter, perimeter
you get around a lot.
I've got to add up all your sides
To see just how much length you've got!__________

Area ... oh area ...
I know that you're inside!
I will multiply two touching sides
To see how much you're trying to hide!__________

How much is this worth? Write your answer in decimal notation.

Measure this line to the nearest centimeter. _____ cm

Measure this line to the nearest inch. _____ inches

Measure this line to the nearest \(\frac{1}{2}\) inch.

a) 5 inches
b) 5 \(\frac{1}{2}\) inches
c) 6 inches
Measurement Chart...Ways of Measuring

Fill in the blanks with the correct numbers or words. You won't use all of them, but you might need to use some of them more than once!

<table>
<thead>
<tr>
<th>Time</th>
<th>Weight</th>
<th>Capacity</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>___ seconds = 1 minute</td>
<td>Which word is used to tell how much something weighs?</td>
<td>a)__________</td>
<td>Metric</td>
</tr>
<tr>
<td>_____ minutes = 1 hour</td>
<td></td>
<td>b)__________</td>
<td>a)__________</td>
</tr>
<tr>
<td>24 hours = ______ day</td>
<td></td>
<td>c)__________</td>
<td>Customary</td>
</tr>
<tr>
<td>7 days = ______ week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 ______ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 ______ = 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months = 1 ______</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Customary</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)__________</td>
<td>a)__________</td>
</tr>
<tr>
<td>b)__________</td>
<td>b)__________</td>
</tr>
<tr>
<td>c)__________</td>
<td></td>
</tr>
</tbody>
</table>

There are 12 inches in 1 ____________.