4th Grade Mystery Science Energy Transfer Lesson

Alignment and Support

Salt Lake City School District 2020

Mystery Science Lesson Rationale:

Mystery Science Lesson Rationale: Mystery Science Lessons seek to promote engagement and inspire excellence in students' mastery of science and engineering. The lessons support our vision and mission of equity and access in elementary science. The sequence of Mystery Science Full Lessons and Mini-Lesson below support fourth grade students' sense-making with respect to Energy using three-dimensional instruction. The sequenced Mystery Science Lessons support fourth grade teachers in implementing the new Utah SEEd Standards about organisms identified specifically in the Prioritized SEEd Pacing Guide. Lessons include a video focused on an organism-based phenomenon, a hands-on activity, and an assessment. The lessons are designed to take students approximately 60 minutes to complete. Most lessons use minimal materials, such as paper printouts and pencils. Additionally, most paper printouts can be downloaded individually from the Mystery Science Lessons websites in the form of an editable document that can be assigned through Canvas. Some lessons suggest markers, group work, or demonstrations. Teachers can make easy modifications to these lessons based on students' and teachers' resources.

Note: Use a Science Notebook or print the <u>Mystery Science PDF Booklet</u> for students to complete the lesson series below! You can also print individual lesson materials by following the links in the *Materials per Student and Assessments*.

Strand 4.2: Energy Transfer

Energy is present whenever there are moving objects, sound, light, or heat. The faster a given object is moving, the more energy it possesses. When objects collide, energy can be transferred from one object to another causing the objects' motions to change. Energy can also be transferred from place to place by electrical currents, heat, sound, or light. Devices can be designed to convert energy from one form to another.

Standard 4.2.2: Colliding Objects

Ask questions and make observations about the changes in energy that occur when objects collide. Emphasize that energy is transferred when objects collide and may be converted to different forms of energy. Examples could include changes in speed when one moving ball collides with another or the transfer of energy when a toy car hits a wall. (PS3.B, PS3.C)

Standard 4.2.3: Energy Transfers Heat, Light, Sound

Plan and carry out an investigation to gather evidence from observations that energy can be transferred from place to place by sound, light, heat, and electrical currents. Examples could include sound causing objects to vibrate and electric currents being used to produce motion or light, (PS3,A, PS3,B)

Mystery Science	Suggested Date	Materials and Assessments	Remote Learning
Lesson	and SEEd		Modifications
	Alignment		

Anchor Phenomenon Lesson Rube Goldberg Machine The anchoring phenomenon for this unit is an intricate Rube Goldberg machine. Students generate observations and questions about the phenomenon and create an initial conceptual	Teachers note:Make sure toturn on theMystery Scienceanchoringphenomenon inthe EnergizingEverything unitMysteryScienceHandouts Pdf	Materials per student: <u>See-Think-Wonder chart</u> <u>Rube Goldberg machine model</u> 	
model to explain what is happening. Lesson 1: <u>How is</u>	January 25	Materials per Student:	Teacher demo
your body similar to a car? In this lesson, students learn that we use the energy from food to make our bodies move just like cars use the energy from gasoline to move. In the activity, Twist-o-matic Tester, students build paper models of an amusement park ride called the Twist-o-Matic. The ride stores energy in rubber bands and spins around when the energy is released. Students compare the speed of the spins when they use a thin rubber band versus a thick rubber band.	Disciplinary Core Ideas: PS3.B, Foundational for PS3.A Science and Engineering Practice: analyze and interpret data, develop, and use models, plan and carry out and investigation Crosscutting Concept: Energy & Matter, Systems & system models	 Twist-O-Matic Challenges Answer Key teacher-only resource Twist-O-Matic Challenges worksheet Twist-O-Matic printout Students working alone will need 2 copies of this template. Crayons Hardcover books Rulers Scissors Rubber bands (#16) Rubber bands (#62) Small binder clips (3/4") Reading: Newsela Articles for Mystery 1 Assessment: Mystery 1 assessment Answer Key 	recommended Students at home Set up two Twist-o- matics to demonstrate the activity over video conference. Students need the <i>Twist-o-matic</i> <i>Challenges</i> worksheet (printed or digital) to record their ideas and observations. Students at school Set up two Twist-o- matics to use as you demonstrate the activity for your students. Each student needs a copy of the Twist-o-matic Challenges worksheet so they can record their ideas and observations
Anchor Phenomenon Lesson <u>Rube Goldberg</u> <u>Machine</u>		Materials per student: • <u>See-Think-Wonder</u> <u>chart</u>	All students update their Rube Goldberg machine model

Lesson 2: What makes Roller coasters go so fast? In this lesson, students explore how energy can be stored as height. In the activity, Bumper Coasters (Part I), students	February 1 Disciplinary Core Ideas: PS3.A Science and Engineering Practice: analyze and interpret data, downlon_and	Rube Goldberg machine model Materials per Student: Alligator printout Bumper Coaster Part I Answer Key teacher- only resource Bumper Coaster Part I Tracks printout Collision Experiments worksheet Distance & Height Experiments worksheet Box	Teacher demo recommendedStudents at home Set up Bumper Coasters (Part 1) (with foam tubing or paper) to demonstrate over video conference. Watch this video to see how to make a paper bumper enseten in about 10
build paper roller coasters. Students release marbles down the roller coaster track to understand height energy and energy transfer.	develop, and use models Crosscutting Concept: Energy & Matter	 Pencil Rulers Scissors File Folder labels (Stickers) Paper clips Small marbles Reading: Newsela Articles for Mystery 2 What Goes Up Must Come Down_describes energy transformations during a roller coaster ride. Assessment: Mystery 2 assessment Answer Key	coaster in about 10 minutes. Each student needs the <i>Distance &</i> <i>Height Experiments</i> and the <i>Collision</i> <i>Experiments</i> worksheets (printed or digital) to record their observations Students at school Set up Bumper Coasters (Part 1) (with foam tubing or paper) as a teacher demonstration. Watch <u>this video</u> to see how to make a paper bumper coaster in about 10 minutes. Students need the <i>Distance &</i> <i>Height Experiments</i> and the <i>Collision</i> <i>Experiments</i> worksheets to record their observations
Anchor Phenomenon Lesson <u>Rube Goldberg</u> <u>Machine</u>		Materials per student: <u>See-Think-Wonder</u> <u>chart</u> <u>Rube Goldberg</u> <u>machine model</u> 	All students update their Rube Goldberg machine model

Lesson 3: Why is the first hill of a rollercoaster always the highest? In this lesson, students will explore how high the hills of a roller coaster can be. In the activity, Bumper Coasters (Part II), students add hills to the Bumper Coaster they built in Lesson 2 and experiment to build a deeper understanding of hills and energy.	February 8Disciplinary Core Ideas: PS3.BScience and Engineering Practice: Plan and carry out an investigation & analyze and interpret dataCrosscutting Concept: Energy & Matter	Materials per Student:•Bumper Coaster Hill Tracks printout•Bumper Coaster with Hills worksheet•Bumper Coaster with Hills Answer Key teacher-only resource•Low Hills, Medium Hills, and Hill Holder printout•Low Hills, Medium Hills, and Hill Holder printout•Bumper Coaster Tracks and Alligator from Energizing Everything Lesson 2•Box•Pencil•Rulers•Scissors•File Folder labels (Stickers)•Paper clips•Small marblesReading: Newsela Articles for Mystery 3Assessment: Mystery 3 assessment Answer Key	Teacher demo recommended Students at home Set up Bumper Coasters (Part 2) (with foam tubing or paper) to demonstrate over video conference. Students need the <i>Bumper</i> <i>Coaster with</i> <i>Hills</i> worksheet (printed or digital) to record their observations. Students at school Set up Bumper Coasters (Part 2) (with foam tubing or paper) as a teacher demonstration. Students need the worksheets to record their observations.
Anchor Phenomenon Lesson Rube Goldberg Machine		Materials per student: <u>See-Think-Wonder</u> <u>chart</u> <u>Rube Goldberg</u> <u>machine model</u> 	All students update their Rube Goldberg machine model
Lesson 4: <u>Could</u> <u>you knock down</u> <u>a building using</u> <u>only dominoes?</u> In this lesson, students construct an explanation of how energy is stored, released, and transferred in chain	February 15 Disciplinary Core Ideas: PS3.A, PS3.C, ETS1.A Science and Engineering Practice:	Materials per Student: • <u>Chain-Reaction</u> <u>Starter Kit</u> printout • <u>Marble Corral</u> printout • Markers • Rulers • Scissors • File Folder labels (Stickers) • Paper clips • Small marbles	Ready to teach Students at home Each student needs: 1 marker, 1 ruler, a pair of scissors, 1 Dixie cup, 1 8oz paper cup, paper clips, 3 stickers (or pieces of tape), 1 rubber band and 1 marble. To

reactions, such as falling dominoes. In the activity, Build a Chain Reaction (Part I), students are presented with an engineering design challenge to create their own chain reaction machinea project they will continue in Lesson 5. Students experiment with a "Chain- Reaction Starter Kit." This kit includes a lever and a ramp, which serve as the first two steps of a chain-reaction machine.	Constructing explanations and designing solutions Crosscutting Concept: Energy & Matter	 Dixie cups (3oz) Paper cups (8 oz) Rubber bands (#32) Reading: <u>Newsela Articles for</u> <u>Mystery 4</u> Assessment: <u>End of Unit Assessment</u> <u>Answer Key</u>	make the activity easier for students working at home, we have created new versions of Step 8b and Step 9b in the activity. Students at school Students can build their chain reaction machine while working solo, but there are a few partner steps in the activity. To make solo work easy, we have created new versions of <u>Step</u> 8b and <u>Step 9b</u> in the activity.
Anchor Phenomenon Lesson Rube Goldberg <u>Machine</u>		Materials per student: <u>See-Think-Wonder</u> <u>chart</u> <u>Rube Goldberg</u> <u>machine model</u> 	All students update their Rube Goldberg machine model
Lesson 5: <u>Can</u> <u>you build a</u> <u>chain reaction</u> <u>machine?</u> In this lesson, students learn about storing, releasing, and transferring energy. In the activity, build a Chain Reaction (Part II), students complete the chain-reaction machine they started building in Energizing Everything Lesson 4.	February 22 Disciplinary Core Ideas: PS3.A, PS3.C, ETS1.A Science and Engineering Practice: Constructing explanations and designing solutions Crosscutting Concept: Energy & Matter	Materials per Student: • Chain-Reaction Starter Kit printout • Pop-Up Sign printout • Lever from Energizing Everything Lesson 4 • Ramp from Energizing Everything Lesson 4 • Hardcover books • Markers • Scissors • Dixie Cups (3oz) • File Folder labels (Stickers) • Index cards (3x5) • Paper clips (Jumbo) • Small marbles Reading: Newsela Articles for Mystery 5 Assessment: End of Unit Assessment Answer Key	Adjust supplies Students at home Have students build their own chain reaction machines at home (for even more fun!). You'll need to double the supply quantities listed below for the Dixie cups, stickers, index cards, paper clips and pop-up signs. Watch <u>this video</u> with students to get started, and encourage them to watch <u>our inspiration</u> <u>videos</u> .

Anchor Phenomenon Lesson Rube Goldberg Machine		Materials per student: • <u>See-Think-Wonder</u> <u>chart</u> • <u>Rube Goldberg</u> <u>machine model</u>	All students update their Rube Goldberg machine model
Lesson 6: What if there were no electricity? In this lesson, students are introduced to electricity as a form of energy. In the activity, build a Flashlight, students investigate how electrical energy requires a circuit and make their own mini flashlights from LEDs, button batteries, and strips of aluminum foil. Along the way, they'll learn about the anatomy of a battery, begin to see how circuits work, and discover how handy an on- off switch can be.	March 1 Disciplinary Core Ideas: PS3.B, ETS1.A Science and Engineering Practice: Constructing explanations and designing solutions Crosscutting Concept: Energy & Matter	Materials per Student: • Flashlight Maker worksheet • Scissors • Aluminum foil • File Folder labels (Stickers) • Index cards (3x5) • Batteries (3V 2032 button) • LEDs Reading: Newsela Articles for Mystery 6 Assessment: Mystery 6 Assessment Answer Key	Ready to teach Students at home Each student needs: 1 battery, 1 LED, 1 index card, a sheet of aluminum foil (4"x12"), and stickers. Students also need the <i>Flashlight</i> <i>Maker</i> worksheet (printed or digital)
Anchor Phenomenon Lesson Rube Goldberg Machine		Materials per student: <u>See-Think-Wonder</u> <u>chart</u> <u>Rube Goldberg</u> <u>machine model</u> 	All students update their Rube Goldberg machine model
Lesson 7: <u>How</u> <u>long did it take</u> <u>to travel across</u> <u>the country</u> <u>before cars and</u> <u>planes?</u>	March 8 Disciplinary Core Ideas: PS3.B, PS3.D Science and	Materials per Student:•Do Not Touch The Light Bulb! printout You need 1 sign for each Heat Spinner Station with a lamp.•Get to Know Your	Teacher demo recommended Students at home Set up Heat Spinners (Part 1 of the activity). Have students make

In this lesson, students explore how heat is another form of energy that can make things go. In the activity, Heat Spinner, students first make a paper Heat Spinner and observe how air can create movement. Then, students use their Heat Spinners to experiment with a heat source (an incandescent bulb) and discover how heat energy can make the spinner move in different ways.	Engineering Practice: Plan and carry out an investigation Crosscutting Concept: Energy & Matter	Spinnerworksheet•Heat Spinners printout•Inventing a Heat Engine•Desk lamp•Rulers•Scissors•Paper cups (8oz)•Pencils with erasers•Pipe cleaners•Push pins•Rubber bands (#32)•Incandescent bulbs (40 W)Reading:Newsela Articles for Mystery 7Assessment:Mystery 7 Assessment Answer Key	observations as you do Part 2 of the activity and demonstrate over video conference. Students need the <i>Inventing a Heat</i> <i>Engine</i> worksheet (printed or digital). Students at school Set up Heat Spinners (Part 1 of the activity) and demonstrate the activity. Have your students make observations as you demonstrate (Part 2 of the activity). Students need a copy of the <i>Inventing a Heat</i> <i>Engine</i> worksheet to record their observations.
Unit Review & Performance Task: <u>Can you</u> <u>turn on a</u> <u>flashlight</u> <u>without</u> <u>touching it?</u> In the Performance Task, students will design a Rube Goldberg machine that utilizes energy transfers and conversions to turn on a flashlight.	Disciplinary Core Ideas: PS3.A, PS3.B, PS3.C, PS3.D Science and Engineering Practice: constructing explanations and designing solutions Crosscutting Concept: Energy & Matter	 Step 1: Plan ahead In this performance task, students apply what they've learned about storing, releasing, and transferring energy by building their own Rube Goldberg machine to turn on the flashlight they created in Mystery 6. To complete the performance task, students will need the ramps, levers, and various classroom materials from Mystery 4 and 5. They will also need their flashlight (with a switch) from Mystery 6. Students may bring in materials and objects from home to use in their machines. Step 2: Gather supplies Students will work in groups to build a Rube Goldberg Machine. Each group will need: Scissors At least four stickers or strips of masking tape Dixie cup 	Ready to teach Students at home Send supplies for students to complete the activity at home.

• Up to four jumbo paper
clips about 1 ³ / ₄ inches long
(you can use small ones,
but you'll need twice as
many)
• One of the ramps built in
Mystery 4
• One of the levers from
Mystery 4 (or the ruler,
marker, and rubber band
used to make it)
• 3×5 card
• A few books to stack for
height
• Table or desks to work on
• Small 1/2-inch or 5/8-
inch marble
A marker to write with
Students can also add a variety of
materials to extend their chain-
reaction machines. You can ask
them to bring things in or gather
some basic materials to keep in the
classroom. See the list below for
items we recommend having on
hand. Or, for more ideas,
watch <u>"Inspiration for Chain</u>
Reaction Builders'' in Extras to
see some possibilities.
I I I I I I I I I I I I I I I I I I I
• Extra printouts of
the "Chain-Reaction
Starter Kit"
handout from Mystery
4 (in case students want
to make more ramps)
Card stock for making
custom-built ramps
Paper cups to serve as
ramp supports
Books and boxes to add
height
 Dominoes or objects that
will topple like dominoes
(dominoes built of LEGO
bricks, cassette tapes,
paperback books, markers
standing on end, etc.)
• String
 String More stickers
• Things that roll (empty
cans, toy cars, rubber

 balls, markers lying down, toilet-paper tubes) Unconventional ramps (like empty binders)
Step 3: Print out classroom materials Each student will need:
 One <u>"Final Project"</u> <u>handout</u> One <u>"Final Project</u> <u>Rubric" handout</u> One <u>"Conceptual</u> <u>Model" handout</u>
Assessment: End of Unit Assessment Answer Key